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ABSTRACT

The numerical method developed by Chen and Patel (IIHR Report No. 285,
April 1985) for the solution of the partially-parabolic Reynolds-averaged
Navier-Stokes equations has been generalized to solve the fully-elliptic
equations. This method is applied to calculate the flow over the stern and in
the wake of several ship forms for which extensive data are available. The
report also provides an overview of the present status of experiments and
computational capabiliti,?s fori such flows.
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NOMENCLATURE

Alphabetical

A grid-attraction amplitude function defined in equation (41)

A,B,C,R convection coefficients in the linearized convective-transport

equation (45)

a,b,c (1) modified grid-control functions defined by equation (36)

(2) constants in analytical solution of the one-dimensional

equations (49) and (51)

AOBoC¢ 0 convection coefficients in the linearized convective-transport

equation for 0(=U,V,W,k,e)

ap, ad, etc. finite-analytic coefficients for pressure and pressure-correc-

tion equations

bý,c¢,d@ constants in transport equations (16) for 4(=U,V,W,k,S)

bo two-dimensional grid-control function defined by equation (40)

bc three-dimensional grid correction function defined by equation

(41)

Jý geometric coefficients as defined in equation (27)

C dimensionless crossflow velocity, normalized by U0

c grid-adjustment factor defined in equation (4l,)

Cb block coefficient

Cnb finite analytic coefficients for transporteequattins

(nb = NE, NW, SE, SW, EC, WC, NCi SC)

CdCnCe finite-analytic coefficients for pressure and pressure-correc-

tion equations

Cf Tw/ i Pul, friction coefficient (=2U 2)

Cp =2p, pressure coefficient normalized by i PU0
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Cp,Cu,CD finite analytic coefficients for transport equations at cen-

tral, upstream and downstream nodes

C PICclC 2  turbulence-model constants

d constant defined in (41)

D1  partial mass source term defined in equation (60a)

D source function in pressure equation (61)
.

D mass source term in pressure-correction equation (65)

dd~dn, etc finite-analytic coefficients for pressure and pressure-correc-

tion equations

E2 series summation term in equation (52)

fi grid-control functions in equations (19) and (20)

G turbulence generation term in equation (9) and (26f)

g (1) geometric coefficient in equation (29)

(2) source function in linearized transport equations (50) and

(52)

gi'i metric tensor in general curvilinear coordinates

g conjugate metric tensor in general curvilinear coordinates

h grid size in equation (46)

hi metric coefficients or scale factors in orthogonal coordinates

xi

J Jacobian

k (1) dimensionless turbulent kinetic-energy, normalized by U°2

0

(2) grid size in equation (46)

L length scale (body length)

1 grid size in equation (46)

N distance normal to the body cross-section

N UoN/v

0vI
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' unit vectors normal to the coordinate lines

2p dimensionless pressure, normalized by PUo

p guessed (imperfect) pressure field
.

p' p-p , pressure-correction

dimensionless total velocity vector, normalized by Uo

q projection of the velocity vector on the body surface

q magnitude of q

q ,q ,q dimensionless component velocities along E,n,c directions,

respectively

R radius

r 1T/L, dimensionless radius

r position vector

rs,rmax dimensionless radius of the body surface and outer boundaries

Re UoL/v, Reynolds number

R¢ 1/Re + vt/la, as in equation (10)

so's@ 0source functions for transport quantities O(E U,V,W,k,•)

t dimensionless time, normalized by L/Uo

U,V,W dimensionless velocity components, normalized by Uo

U ,V ,W velocities obtained from guessed pressure field p

SU,V,W pseudovelocities in equation (57)

UVW modified pseudovelocities in equation (59)

Uo constant free-streram (reference) velocity

Uc wake centerline velocity normalized by Uo

U velocity vector

UT (Tw/PU2)1/2, normalized friction (wall shear) velocity
T w 0

uu, Wv, etc. dimensionless Reynolds stresses, normalized by Uo2

0

us velocity at the edge of boundary layer
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YYZ Cartesian coordinates

x,y,z;X,Y,Z dimensionless Cartesian coordinates

x dimension'ess orthogonal coordinates (i=1,2,3)

x,r,e dimensionless cylindrical-polar coordinates

y+ ReUTy, dimensionless distance normal to the wall

y dimensionless distance from the hull surface in the y-direction

Greek

a angle between T and nI

a • coefficients in transport equation (22) for 0(=U,V,W,k,c) and

i=1,2,3

0 angle between q and i-direction on the body surface

'y angle between T and T

6 boundary-layer thickness

rate of turbulent energy dissipation, normalized by U /L
0

von Karman constant

m eigenvaluesm

v kinematic viscosity

V t turbulent eddy-viscosity, normalized by UoL

, transformed (general curvilinear) coordinates

general curvilinear coordinates (i=1,2,3)

',n ,t transformed coordinates in linearized convective transport

equations (45)

= 3.141592653589793

a 0 turbulence model constants for 0(=U,V,W,k,e)

0 (1) transport quantities (U,V,W,k,e)

(2) y or z in equation (42)
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Superscripts

d,e, etc. downstream, east, etc., control surfaces

n,n-1 nth and (n-l)th time step
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I. INTRODUCTION

This report is concerned with the three-dimensional shear flow over the

stern and in the wake of a ship. A review of the general features of such

flows was provided by Patel (1982). On the basis of available experimental

evidence it was observed that these flows could not be adequately described by

boundary-layer theory or simple extensions of it, and recourse had to the so-

called partially-parabolic (or parabolized) Navier-Stokes equations. The need

for further experiments to provide the details required for the development

and verification of solution procedures was also identified. Over the past

few years, nuch effort has been devoted at many organizations to the develop-

ment of solution procedures appropriate for the complex geometries of ship

hulls, and additional experiments have been conducted on a number of different

ship and ship-like models to establish a data base.

In the research at The University of Iowa, a method for the solution of

the partially-parabolic equations was first developed and applied to a variety

of trailing-edge and wake flows, including the flow over axisymmetric bodies

and ship-like three-dimensional bodies. This method was described in detail

by Chen and Patel (1985a) and its applications have been reported in several

publications [Chen and Patel (1984; 1985a,b), Patel and Chen (1986a)]. During

the course of this development it became clear that the numerical algorithms

and physical models incorporated into the method could be employed equally

well in the solution of the complete, fully-elliptic, Reynolds-averaged Nav-

ier-Stokes equations without incurring a significant penalty in computing

times or storage. Although, as noted in Patel (1982), the partially-parabolic

approximations are quite appropriate for most ship stern flows, the greater

range of applicability of the fully-elliptic formulation was considered very

attractive. For this reason, the partially-parabolic method of Chen and Patel

(1985a) has been generalized to a fully-elliptic mode. The changes which are

required in the original formulation are described here. This more general
method is then applied to calculate the flow over several ship forms for which

experimental data are available.

In what follows, we shall first put the present work in perspective by
reviewing the different approaches which at being adopted to develop calcula-

tion procedures for ship stern flows. The status of the experimental informa-
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tion is then reviewed to identify suitable test cases for the assessment of

calculation methods. This is followed by a description of the fully-elliptic

method, and its evaluation by application to the selected test cases. Detail-

ed comparisons are made between the experiments and calculations with respect

to the hull pressure distribution, the mean velocity field, and, when avail-

able, the turbulence parameters. It is shown that the numerical method is

capable of handling all the geometrical and physical features of the flow.

Some improvements are, however, necessary in the modelling of the turbulence,

particularly in the near-wall and near-wake regions.

II. SHIP STERN AND WAKE FLOW

II1. DEVELOPMENTS IN THEORY

An accurate prediction of the flow at the stern is of great practical

interest in the determination of ship resistance, in the design of propellers

and appendages, and in the determination of the ensuing wake. The failure of

conventional boundary-layer calculation methods, of the type which have been

used with considerable success on aerodynamic configurations, to predict the

thickening of the viscous flow over the stern was demonstrated quite dramati-

cally by the results presented at the SSPA-ITTC Workshop [Larsson (1981)].

Figure 1, adapted from that reference, shows the contours of the axial compo-

nent of velocity at a transverse section close to the stern of two double

models tested in wind tunnels. There are many reasons for the observed dis-

agreement among the calculations with different methods and experiments.

Among these are: failure of the boundary-layer approximations, inadequacies of

the empirical inputs to effect closure of the equations, and, of course, inac-

curacies in the numerical schemes.

As noted in the recent Report of the Resistance and Flow Committee of the

18th ITTC [referred to here as ITTC (1987)], methods for the calculation of

stern flows have evolved in two general directiors. One of these involves

generalization and extension of the thin boundary-layer methods, of both

integral and differential types, to include such factors as changes in coor-

dinate metrics normal to the surface, normal variation of pressure, and inter-

action between the viscous and inviscid flow regions. The development of

these so-called higher-order integral methods for thick boundary layers has

2



be-n pursued by Nagamatsu (1985), Soejima (1985), and Toda et al. (1985),

among others. These methods involve numerous approximations with respect to

the terms which are retained in the equations, velocity-profile assumptions,

friction formulas, and auxiliary closure equations. Similar attempts to

generalize differential thin boundary-layer methods have been made by Soejima

(1983) and Lee (1985) but they have not reached the level of development of

the simpler integral methods due to the difficulties of coupling such calcula-

tions with the external invicid flow to obtain matched and converged solu-

tions.

The alternative approach to the calculation of stern flows involves

numerical solutions of the complete Reynolds-averaged Navier-Stokes equations,

or the somewhat less general partially-parabolic equations, in domains which,

in principle, encompass the viscous as well as the inviscid flow. Initial

development of such methods was restricted to two-dimensional and axisymmetric

shapes, but applications to three-dimensional problems are now beginning to be

made. Patel and Chen (1986a) presented a review of these, and other methods

of the type discussed above, for the simpler case of axisymmetric flow over

the tail and in the wake of bodies of revolution. They concluded that the

numerical complexities of the traditional iterative approach to viscous-invis-

cid interactions is fast approaching those of the global, large-domain methods

which involve fewer assumptions. However, comparative study of interactive

and noninteractive procedures for the solution of the partially-parabolic

viscous-flow equations made by Stern et al. (1986) suggests that both approa-

ches lead to satisfactory results with comparable computing effort.

Although experience with global numerical methods in three-dimensional

flows, in general, and for ship hulls, in particular, is still quite limited,

different approaches are being followed to develop such methods. This is

evidenced by the recent work of Broberg and Larsson (1984), Chen and Patel

(1984, 1985a,b), Hoekstra and Raven (1985a,b), Huang and Zhou (1985), Ito and

Mori (1985), Janson and Larsson (1985), Kodama (1985,1987), Raven and Hoekstra

(1985), Tzabiras (1984, 1985), and Stern et al. (lI86). These methods are at

various stages of development and differ quite substantially from one another

in many important respects. The principal differences stem from: (a) coordi-

nates used and methods employed to construct them; (b) approximations intro-

duced in the Reynolds-averaged Navier-Stokes equations, leading to the so-

3



called thin-layer equations, or the partially-parabolic equations; (c) the

turbulence model employed, ranging from algebraic eddy-viscosity to multi-

equation models, and the treatment of the boundary conditions; (d) formulas

used to discretize the differential equations and the numerical methods used

to solve them; (e) in the size of the solution domain and coupling with the

inviscid flow, if any; and (f) in the manner in which the solution is initi-

ated, e.g. using inviscid solution, starting with a boundary-layer solution,

marching in time from rest, etc. A detailed discussion of these differences

is well beyond the scope of this report. However, we shall address some of

them in subsequent sections as we describe the particular prccedures adopted

in the present development.

Most of the methods mentioned above have been developed and applied thus

far to the case of double models. Thus, the free surface is considered to be
flat and treated as a plane of symmetry. Extension of these methods to treat

the effects of the free surface have not yet received much attention largely

because the difficulties are even greater than those encountered within the

framework of thin boundary-layer theory [see Stern (1985, 1986)]. Such exten-

sions may evolve along two different directions. In one, a viscous-flow

method may be combined with an inviscid-flow method in an interactive mode to

take advantage of the well developed techniques of 2lassical ship-wave theory.

The alternative approach, which does not separate the viscous and wave ef-

fects, would require the satisfaction of the proper boundary conditions at the
free surface which is itself determined as a part of the solution. This

latter approach has been pursued by, among others, Miyata et al. (1984, 1985,

1986) and Hino (1987). In both cases, however, much further work is needed to

realistically and accurately account for the boundary layer and turbulent flow

effects.

11.2 A GUIDE TO EXPERIMENTS

Measurements in ship boundary layers and in ship wakes have been made
over many years. The review of Patel (1980) for the Stanford Conference on

Complex Turbulent Flows, which emphasized turbulence modeling, indicated that
none of the data available could be regarded as complete enough for the vali-

dation of stern and wake flow calculation methods because che measurements

were restricted to the mean flow. Among the most detailed mean-flow measure-

4



ments on ship hulls were those of Larsson (1974) on the SSPA 720 Liner and

Hoffman (1976) on the HSVA Tanker. Both experiments were conducted with

double models in wind tunnels. These two data sets were in fact used as test

cases in the 1980 SSPA-ITTC Workshop on ship boundary layers (Larsson, 1981),

the results of which were mentioned above in connection with Figure 1. These

experiments continue to be among the most detailed available to date, and

their value has been greatly increased by the subsequent turbulence measure-

ments of Lofdahl (1982) [see also Lofdahl and Larsson (1984)] on the SSPA

Liner, and the extensive wake measurements of Wieghardt and Kux (1980) and

Wieghardt (1982, 1983), and turbulence measurements of Knaack (1984) and

Knaack, Kux and Wieghardt (1985) in the wake of the HSVA tanker. The data on

these two hull forms, therefore, are detailed enough to test several critical

aspects of ship stern and wake flow calculation methods.

The Cooperative Experimental Program of the ITTC Resistance and Flow

Committee provided an impetus to the establishment of a comprehensive data

base on the flow around ship hulls against which emerging theoretical methods

could be tested. While the focus of this program was on quantities of princi-

pal concern in tankery, it also led to some detail measurements in the viscous

flow. The present status of the program is reviewed in ITTC (1987). Of the

four hulls which were initially selected for the program, which included the

HSVA Tanker mentioned above, measurements in the boundary layers and wakes of

two have been reported to date. These are the Wigley parabolic form and the

Series 60, CB =0.60 form. In spite of the concerted international effort over

a period of years, not all of the available data are suitable as test cases

for numerical methods of the type described in the previous section. Is

pointed out in ITTC (1987), many experiments were confined to a few stations

over the stern and in the very near wake and, therefore, it is difficult to

establish proper initial and boundary conditions for them. Some involve large

scatter and uncertainty due to blockage and model attitude. Also, quite

different measurement locations and coordinates have been employed by differ-

ent experimenters even for tests on the same hull form. While this precludes

direct comparisons among data sets from different experiments and test facil-

ities, some of the data sets are sufficiently well documented for use in

testing the capabilities of calculation methods to predict certain important

aspects of the flow.
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In addition to the measurements on the Wigley and Series 60 hulls made

under the auspices of the ITTC program, data have been obtained in the stern

flow of other ship hulls and ship-like forms. Fukuda and Fujii (1985) have
reported measurements on three hulls, including a Series 60, CB=O.8 form and

an elongated model derived from it by adding a parallel middle body to study

scale effects, by Hotta and Hatano (1985) on a tanker model, and by Hinatsu

and Takeshi (1985) on two other hulls. Of these, the first were conducted on

double models in a wind tunnel, the second used a free-surface model in a

water channel, and the last was performed in a towing tank. Only the first

two included turbulence measurements. Among the experiments on ship-like

bodies are those of Huang et al. (1983) on two models of elliptic cross sec-

tion with the same sectional area distributions as that of one of the axisym-

metric bodies which were tested earlier.

Although the foregoing summary of experiments gives the impression that
there is now a substantial body of experimental information on stern flows

over a variety of shapes, in reality the available data are not sufficiently

complete or extensive enough to be used as comprehensive test cases for calcu-

lation methods. In fact, this deficiency is not restricted to ship flows. It

is shared by practically all measurements in three-dimensional flows because

such measurements are time consuming and expensive, and the experimental

techniques themselves are not well developed. Also, the experiments are
rarely conducted for the purpose of validating all aspects of any particular

calculation method. The choice of test cases for this purpose is, therefore,

a difficult one. We shall address this issue in a later section.

11.3 SCOPE OF THE PRESENT WORK

The purpose of this report is two-fold: (a) to describe the generaliza-
tion of the partially-parabolic method of Chen and Patel (1985a) to a fully-

elliptic capability, and (b) to assess the performance of the method by com-

parisons between calculations and experiments. The first aspect is relatively

straightforward because the partially-parabolic method was described in con-

siderable detail in the above reference, and the changes in the numerical

structure of the method are not extensive. In the interest of completeness,
however, the essential parts of the method are reviewed. The method is de-

scribed in the next section (Section III).
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The second task is more formidable for several reasons. First, it is

important to identify the most critical and the most successful aspects of the

overall method by evaluating, to the extent possible, the performance of each

of the many components of the method. This involves the selection of simple

test cases in which a particular feature of the method can be evaluated.

Fortunately, the present method has been subjected to such tests and the

results have been reported in the literature. For example, the performance of

the k-c turbulence model, together with the two-point wall functions approach,

features which are retained in the present method, has been examined in the

previous applications of the partially-parabolic method, and the capability of

the elliptic numerical scheme to handle separation and reattachment in axisym-

metric laminar and turbulent flows was demonstrated by Patel and Chen (1986b)

and Chen and Patel (1987b, 1988), respectively. Secondly, it is necessary to

evaluate the complete methodology by comparisons with experimental data on a

wide variety of realistic ship forms. Here, the previous experience is some-

what limited. The partially-parabolic method was first compared with data on

the relatively simple ship-like bodies of elliptic cross section in Chen and

Patel (1984, 1985a) and with experiments on the Wigley and SSPA hulls in Chen

and Patel (1985b). Although satisfactory agreement was observed in all cases,

some difficulties were noted, particularly in the last reference, with regard

to grid refinement and turbulence modeling. That reference also pointed out

yet another, and equally important difficulty of carrying out detailed compar-

isons between calculations and experiment. This relates to the different

coordinates employed in the two, and the loss of accuracy resulting from the

required interpolation. While these difficulties cannot be readily resolved,

they emphasize the need to make comparisons with a number of data sets, col-

lected in different ways and on different models, to provide a more complete

account of the capabilities of the numerical method. Special attention is

therefore paid in the present work to examine the available data summarized in

the previous section to identify potential test cases. The rational for

selecting five hull forms, namely the Wigley parabolic ship, the SSPA 720

Cargo Liner, the HSVA Tanker, the SR107 Ore Carrier, and the Series 60, Cb =

0.6 form, will be discussed along with the corresponding calculations and

comparisons with data in Section IV.
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III. CALCULATION STRATEGY AND METHOD

III.1. EQUATIONS AND COORDINATES

For three-dimensional flows involving complex geometries, it is desirable

to employ body-fitted coordinate systems so that the flow in the wall layer

can be accurately resolved with a reasonable number of grid points. Once such

a coordinate system is selected for a given geometry, there remains the task

of formulating the equations of motion in that system. Two different approa-

ches can be adopted for this purpose. One of these uses what may be termed
"partial transformations", in which only the independent coordinate variables

are transformed, leaving the dependent variables (i.e. velocity components) in

a preselected coordinate system in the physical domain. This approach, which

has been used by Chen and Patel (1985a,b), among others, has the advantages

that the resulting equations are relatively simple and the results can be

readily interpreted. Since the velocity vectors, in general, do not align

with the coordinate directions, this approach may lead to increased numerical

diffusion when the angles between the velocity components and coordinate sur-

faces become large. The alternative is to transform the equations completely,

including the independent as well as the dependent variables. This approach

has been used by, among others, Richmond et al. (1986), Stern et al. (1986),

and Ogawa and Ishiguro (1987). The use of contravariant velocity components

in such a complete transformation allows a much more accurate resolution of

the boundary-layer flow near a solid surface. However, the fully-transformed

equations involve many geometric coefficients and their higher-order deriva-

tives. This not only leads to increased computer storage requirements but

also can adversely affect the solution of the flow equations if the coeffici-

ents are not evaluated accurately. In many practical applications, it is not

necessary to use the complete transformations if the basic coordinate systems

are chosen carefully so as to avoid large skew angles between velocity compon-

ents and the faces of the computational cell.

In the present study, which is concerned with external flows past ship

forms, the restrictions associated with the partial transformations can be

easily alleviated by choosing cylindrical polar coordinates as the basic

coordinate system in the physical plane. A detailed description of such

partial transformations and the corresponding equations was given in Chen and

8
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Patel (1985a). For the sake of completeness, we shall briefly describe these

in the following.

Consider the equations of motion in cylindrical coordinates (x,r,e) for

unsteady, three-dimensional, incompressible flow. The exact Reynolds-averaged

equations of continuity and momentum of the mean flow, in dimensionless form,

are,

au + I a (rV) + I aw = 0 (1)
ax raTr ra -6

au + a + u wau + a (V- a+ U ý- + V rr + -+ (P + uu) + N (u-v

•@ u._v 1V2U 2

+ rla(-) +urvRe U 0  (2)

av aV BV + W _ W2 _ a a
@t+ U ax + V +r + r T x (uvN) +Trr (p + V)

1 + ( vv ww l (v2v __w--) : 0 (3)+ vw r r Re r 2 36 r 2

aw aw -• a - a
t+U + V ý+a +r +; (uw) +•(vw)

1"a +12 2aV W) = 2
+ 7  e (p + ww) + 2 r- R (e 2W + (-4 ) - r2

r r Rer 2 e r2

withv 2  a2  a2  la 1 a2

ax 2ar+•r r 2e2

X R

where x = , r = T, e are the dimensionless coordinates normalized by a char-

acteristic length L, and t is the time normalized by L/Uo. U, V, W are,

respectively, the longitudinal, radial and circumferential components of mean

velocity normalized by the characteristic velocity Uo. p is the pressure

9
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normalized by PU0 2. Re U oL/v is the Reynolds number defined in terms of U0,

L and molecular kinematic viscosity v. The barred quantities uu, uv, etc.,

are the Reynolds stresses, normalized by Uo.

In the present study, the two-equation k-c turbulence model is used to

model the Reynolds stresses. Each stress is related to the corresponding mean

rate of strain by an isotropic eddy viscosity vt as follows:

Vv = V + av

-uw ax ra

t rw = t(I av --w (5)

- r a6 kr
-uu =vt(2 -Zk

- vV = v (2 aV -2k

w =t(r-Z + 2 )-j k

The eddy viscosity is related to the dimensionless turbulent kinetic energy k,

and its rate of dissipation e, by

V = c k 2  (6)

where c is a constant, and k and c are governed by the convective transport

equations

ak ak ak W ak a 1 ak

1 a (I k 1 a k GL (k+ r~r T Rk r Tr ) + r-2 TO R + G- (7)
r k r k

as U as + as X Was a (1 O
ax Ur rao ax R. ax

10



,~ +r-r Rc r-r) 2 DO2@ R 30
er

+ Cel e G - C 2  (8)

where G is the turbulence generation term:

2 [(9Ux2 V2 l W V 2 1 aU aW 2
+ tr + r +(36+r) I +(rT+rTO

LV +U 2 .1 V +W W2 (9)

The effective Reynolds number, R,, is defined as

1• L +- t (10)
WRe a

Where = (U,V,W,k,e). The constants in these equations were taken as

Cu = 0.09, Cel = 1.44, Ce2 = 1.92, OU = aV =a= a k = 1.0, ac = 1.3. We note

again that vt, k, and c are all made dimensionless by the characteristic

velocity and length scales, Uo and L, respectively.

Using equations (5, 6 and 10), the momentum equations (2) through (4) and

the turbulence-model equations (7) and (8) can be written

av 3vt lu U
-t + ( -t 2• 

1 
(1)U@B-•ta + U xt) allxx+ (V- ar )D--r+( r 9T)" TT

+ p+ k 3V t aV 1 av t DW 1 V

ax+ 3 ýr Tx'•r30 ax R-u

2+ (U -x t + (V - 2r )U+ (WV- .1 ;.1 -

+• a 3 k 3V t aU 1 av t aW W W2

3 Dr ax rr r DO -r r r

II



1 (V2  2 aW = 0(12)
Rv r2 7 6 r2)

BW +U x 3r r tr Do r 30

r 0 r 3 r a8 " Dx r 80 -r r

1 Vt ( lV) (V2W + 2 (13)
r a6 -wr2 ae r2 0

(W- rr ra
• + (U - -- ') x + (V " k r ) r + (W - •• a -- ) r .1 ke

k k k

1 lV 2 k - G +e = 0 (14)
Rk

ae (U t) 3v L a
,t _ ravte 2C vt

2LV 2 e - C G +0 (15)
Re el k ~ e2 k

It is convenient to rewrite these transport equa ions (11) through (15) in the

following general form

V20 = R0 [(U- b0Vt,x) ox + (V- cV t,r) Or +

(W - d rV ) (1 + +s (16)

where 0 again represents any one of the convective transport quaitities: U, V,

W, k or c, and the subscripts x,r,O denote derivatives. The corresponding

coefficients b,, c and d are

12



Ib U2, C U =1, d 1

b l, CV 2, d =1V V V

bW 1, cW 1, dW 2 (17)

b 1 1 d
-o Cka :--d :k k k

br CF de a'

and the source functions so for U, V, W, k and e are, respectively,

S RU [P + 2 kx" Vt rVx" ( Vt'e) Wx] (18a)

v R [P + Z k r- VtxUr - ( Vt o)(Wr - ' 2) -

2 V= r ~ r -tx(r UB) " t rrV" r )"+ 2w + (18b)
r r

1 R2- e 1 k V 1 1 WO
RW W r 3 r r+T t,xY r 8  t,r r V8  r)

- i VtO) L )] r2 V8 + rL (18c)

sk :- RRk (G - e) (18d)

s - R (C G - Ce2 - (18e)

Equations (11) through (15) are coupled, nonlinear, partial differential

equations and, together with the continuity equation (1), are sufficient, in

principle, to solve for the six unknowns p, U, V, W, k and e when proper

initial and boundary conditions are specified.

13



(a) Body-Fitted Coordinates

Three-dimensional geometries, such as ship hulls are usually quite com-

plex and cannot be conveniently described by simple orthogonal coordinate

systems. It is, therefore, desirable to introduce analytic or numerical

coordinate transformations which simplify the computational domain in the

transformed plane and facilitate applications of the boundary conditions. In

the present study, we shall use a numerically-generated, body-fitted coordin-

ate system, since it offers the advantages of generality and flexibility and,

most importantly, transforms the computational domain into a simple rectangu-

lar region with equal grid spacing.

In the numerical grid-generation technique, we seek a coordinate system

for the numerical analysis of the flow in the domain D shown in Figure 2.

This domain is bounded by an arbitrary hull surface S, the ship centerplane C,

the free surface or water plane W, the upstream and downstream sections A and

B, respectively, and an external boundary £. Section A may be located at a

hull section where the boundary layer is thin to avoid calculation of the flow

over the bow or it may be placed far ahead of the ship if the bow is to be

included. The downstream boundary B may be placed at a section in the far

wake. The choice of the external boundary Z is also arbitrary. It could be

far away from the hull or it could coincide with the walls of a towing tank or

wind tunnel. The basic idea of a boundary-conforming curvilinear system is to

find a transformation such that the boundary surfaces of the physical domain D

in cylindrical or in any other basic orthogonal coordinate system, say
1 2 3

(x , x , x ), are transformed into boundaries of a simple rectangular domain

in the computational space (ý, n, e) shown in Figure 3.

With the values of the curvilinear coordinates specified on the boundar-

ies of D, It remains to generate the values of these coordinates in the inter-

ior of D. This is a boundary-value problem in the physical field with the

curvilinear coordinates (R, n, 0) as dependent variables and the orthogonal

coordinates (xl,x 2 ,x 3 ) as the independent variables, with boundary conditions

specified on the curved boundaries. Thus, a system of elliptic partial dif-

ferential equations can be used to generate the cocrdinates since the field

solution of such a system is determined entirely by the boundary conditions.

14



However, the elliptic system must be chosen such that it precludes the occur-

rence of extrema in the interior of the domain and assures a one-to-one map-

ping between the physical and transformed planes.

For the general three-dimensional but simply-connected domain of interest

here, a set of Poisson equations of the form

V2{ E fl( , n, n )

V2 n = f 2 (E, n, r ) (19)

2i i

V 2E = fi, i = 1, 2, 3 (20)

with = 1 = 2 2 =3

may be taken as the coordinate generating system. Here, V2 is the Laplacian

operator in orthogonal coordinates xi. The nonhomogeneous source functions fi

may be assigned appropriate values to yield the desired concentration of

coordinate surfaces. The choice of these functions for specific applications

will be discussed later in Section III.2(a). Equation (20) is subject to

either Dirichlet or Neumann boundary conditions on the boundary surfaces,
C i

which are surfaces of constant t

Since it is desirable to perform all numerical computations in the trans-

formed (9, n, ý) plane with equal grid spacing, i.e., AE = An = A 1 = 1,

equation (20) is cumbersome to use. It is more convenient to invert it and

solve for the orthogonal coordinates. In other words, the dependent and

independent variables are interchanged so that the orthogonal coordinates

(x ,x 2,x 3) in the physical plane become the dependent variables, with the

curvilinear coordinates (ý, n, 0) as the independent variables. The boundary-

value problem in the transformed field then involves generating the values of
i i

the orthogonal coordinates x = x (F, n, c) in the interior from the speci-

fied boundary values of xi on the rectangular boundary surfaces of the trans-

formed field. Since the boundaries in the transformed plane are all rectangu-

15



lar (constant P, n, or ý plane), these computations are carried out on a cubic

grid regardless of the shape of the physical boundaries.

In obtaining the inverse transformation of equation (20), several general

relations between the physical (x,x2,x 3) and the transformed (4, nr, •) coor-

dinates are required. The basic expressions may be found in many reference

books, for example Aris (1971) and Lass (1975), although some of the relations

are not explicitly given. A summary of some important relations are given in

Appendix I of Chen and Patel (1985a) with specific reference to the transfor-

mation between an orthogonal coordinate system (x ,x 2,x 3) and general coordin-

ates ( 1 12 C3) = (4. n, ). The latter are not necessarily orthogonal.

With these transformation formulae, equations (20) become:

21 1 a h hhV2 xI ! ahh3)
h1h2 h3 ax

1  h1

V1x (h3) (21)h1 h2 h3 ax
2  h2

V2x33 1 h(hIh

hx 1 hlh 2 h3 ax
3  h3

where

v2 = g11 32 + g22 D2 +g33 -L2 +2g12 a2  2g13 a2

S 2 a n 2 -- + 2 g - -a-a n +

23 32  1 a 2LB f• (21a)
+ 2g ---. + f T+ f +f

hi are the metric coefficients in the chosen orthogonal coordinates xi, and

gij is the conjugate metric tensor in the transformed coordinates ti(= ,no,).

Note that, for cylindrical polar coordinates (x, r, 0), hi are (1, 1, r),

respectively.

Equations (21) can be solved numerically in the transformed domain
(4,nt) when proper boundary conditions are specified on all boundary

surfaces (i.e., constant E, n and 4). If fl = f 2 = f 3 = 0, the transformation

is said to be homeomorphic. In general, however, non-zero values are assigned

16
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to these functions to exercise control over the grid distribution. Solutions

of equations (21) to obtain numerical grids for particular shapes are present-

ed in Section III.2(a).

(b) Reynolds Equations in Transformed Coordinates

Although, as noted earlier, it is possible to transform both the indepen-

dent (xl, x2, x3, t) and the dependent (U, V, W, k, c) variables to

the (g,n,;) coordinates, we will consider only the transformation of the inde-

pendent variables, leaving the velocity components U, V, W in the original
(xl, x2 , x3 ) coordinates in the physical plane. Also, as mentioned earlier,

the cylindrical polar coordinates (x, r, 0) appear to be most convenient for

the description of the flow field around practical ship forms. Thus, in this

study, equations (1) and (16) [i.e., (11) through (15)] will be used as the

basic equations in the physical plane to derive the equations in the trans-

formed domain (9, n, 0). Transformed equations resulting from other ortho-

gonal coordinates, which may be useful in other applications, are given in

Appendix I of Chen and Patel (1985a). Using these general transformation

relations, equation (16) for an unsteady three-dimensional flow can be written

in the following form:

S11 g 22 nn+ g33 + 2gl2 n+ 2g13 + 2g23¢ný

+ l0 2 0 3 R a 1b 1 b2 0 3

+ 4a2 fb 1 0+ f 2~ -0 + a b 3 10 + a b 1  + b 20 b3

a0 ( 2  b2 b1 2  a0 b3  Eb 3

+ R¢€t + s (22)

where

al =U - j(b 1 V 2+

a = 1 - b23 (23)

J 2 Vtg 2 t'rn (3

a3 = W --k(b 1 V 2 V 3J v3 ,+ b3  t + b3  tý

17



and bI, c, and de are as defined in equation (17). Hereafter, the subscripts

( on t (= U,V,W,k,e) and v denote derivatives.

Equation (22) is identical with equation (A-84) in Appendix I of Chen and

Patel (1985a). It can be rearranged into a general convective-transport

equation of the form

g I1tFt+ g22tnn+ g 33* t 2A + 2Bttn+ 2Ct + R t + St (24)

where

2A = Ri (b3al + b~a2 + ba3)- f) (25a)

tA j 31 3 2 3 3 (2

2B = ! ( 21, 4bczI, + b23) - f2(25b)

11 1ý 2 1 3 (2c

2C, =R (b laI + ba2aI + ba3cI) - f 2c

SI = s -2(g 1 2 •n + gl3 E + 23g n ) (?5d)

and the source functions s are given by

SU = RU [1 (b1 Pý+ b 2p+ bI3 p)+ 2- (blIk + b2k+b 3 )

U UJ1 -1 21 31 1 2 3

(b IVt,+ bV ttn+ b )3 tVV) + b 3 )]~2 ( 2 v1 ,& b2 'to *ý 1ý

1 b 1 2 v,+b3 V )b1 Wt+b2 +b3 Wý(26a)

R2 3' t, 3(1 2 3 +' 1 1 2 1

:RV{ W2 +r (b p+ b2pn+ b3p )+ ýj (b1k + b2 k+ b 3 )

1 V 1 2 3 J 1 2 n3
I2 (blvt, + b1 2 b 3vt )(b1Ue b 2U+ b 3U)

18



jf

112 3 11 2(b b3  t,n+ b V (b2We b

+ 3W4) -gl + 2- 1bWý 2 Wn+b3 V4) (26b)I2 r2

j+ bW b tbW,+ b 3•t•+ 2b1k + - nr
SW RW r~+ Jbp~ 2 3 U 2 3b~ 2

1( V + b2 p + b3 pV (bI b2 k + 0 kU

1 1 b2  32

(b 2 b V )[ 1 (b1V + b V+ b3V)
J ( 2vt'ý 9 b~t' 2 t,ý J 3 3 n 3~ r

-2rV (b I,+ b2t+ b3t } 2 -(b 3V + b2 V+ b3V +W2 (26c)
NJ 3 t' b3 t ~ t,ý NJ 3 + 3-3 r

ri

sk - Rk(G - ) (26d)

2
s =- R (C G - C2 -) (26e)

with

G~t {( 1  2 3 1 2 22 2+ 2 1 (blU+ b2Un+ b3UW) + I? (b1V + b Vn+ b3V )2

2 3 rj

'.3 (b W V+ b2 W + b3 W ) + b~ 2r+b

1 2 1 2 1 3 1C 2 2 3 2

+÷L(blw + b2Wn+ 0 W + b U + b2 U + b

+ [ ( b. 1 b2 W 3 W 1 2 3 -W,2} 2 f
J 02 e b 2Wn + b 2 e V A+ b 3V?1+ b 3YV -}(2f

jij
The radius r, the geometric coefficients anbi ndteJcoin'

which appear in the above equations are functions of the coordinates only.
When either analytic or numerical transformations are employed to generate the
grid distribution, r = r(E, n, i) is known in the transformed plane. The

geometric coefficients bJ and gij for the present transformation are

19



b1 b2 b3  r(r 0- r 0e r(x 0- x 0 x rr - x r1i 2r 3 nn n n r

(b'q) =b 2 b2 b2 
-r(r0-r ) r(xOe -xO1 1 2 3 c- r,, X, xr,- Xr, (27)

b3 b3 b3  r(rO -rr 0-x e) r1 2 3j L E ~ n-x~ YE n n ýrT .

and

ggl g2 2 g3 3 - 9232

gg 2 2 = g3 13 2

gg33 = gll 922 - 9122
99l2 = 9921 = g1 3 923 - 912933 (28)
gg13 = g31 = g12 923 - g13 g22

gg gg32 = g1 2 913 - 923911

where

2 + r 2 + r 262
g 1 1 = Xý

2 2 2 222 = x+ r + rO

2 2 22
g33 = x, + r, + r 6 (29)

g12 = g2 1 = x{xn + ryr + r 2e En

g1 3 = :g31 xx + rr•r + r 2 E•o

92 3 = 932 = xnxý + rnr + rOe%

and

g = gll 922 923 + 2g12 913 g2 3 - (923)2 gll - (g13 ) 2 922
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- (g12) 2 g3 3  (30)

is the determinant of the metric tensor gij. Also, tie Jacobian can be ex-

pressed as

x xn x
j = V•= r• r nr (31)

rO r6. r6

It should be recalled here that (U, V, W) represent the velocity compon-

ents in the physical cylindrical polar coordinates (x, r, e). Equations (24)
through (26), together with the equation of continuity (1), which transforms

to:

(b 1U + bIV + b1W)• + (b2U + bV + b2W)n + (bOU + b3V + b3WC•: 0 (32)

dre the Reynolds-averaged Navier-Stokes equations for unsteady, three-dimen-

sional flows.

111.2. NUMERICAL SOLUTION PROCEDURES

In this section we describe the numerical techniques used for the solu-

tion of the grid-generation equations (21), the fully-elliptic convective-

diffusion equations (24), and the equation of continuity (32). Details of the

numerical method used in grid generation, together with some examples, are
presented in Section (a). The finite-analytic numerical method of Chen and

Chen (1982, 1984) and Chen and Patel (1985a) is then revised and extended to
solve the five transport equations for € = U,V,W,k and e with a guessed pres-
sure field. This is described in Section (b). The continuity equation is

used to obtain equations which enable the determination of the pressure and
pressure-correcti3n fields from the velocity field. This procedure is des-

cribed in Section (c). The treatment of the boundary conditions is described

in Section (d), and the overall numerical solution algorithm is summarized in

Section (e).
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(a) Grid Generation

The numerical curvilinear coordinate system is constructed by solving

equations (21). Because the orthogonal coordinates xi in the physical plane

can be selected arbitrarily and the control functions fi are independent of

these coordinate, it is possible to generate the numerical coordinates in

terms of the simplest Cartesian coordinates (x,y,z), and then transform them

into other orthogonal coordinates which are chosen to specify the velocity

components in the equations of motion. As noted earlier, it is desirable to

use cylindrical polar coordinates as the basic coordinate system for the

present applications to three-dimensional ship forms. It is also desirable to

choose the transverse sections of the hull as the constant-ý stations,

i.e., ý = ý(x), so that the computing effort required for grid generation and

flow calculations can be significantly reduced. With this choice, equations

(21) reduce to

1lx19+ flxg = 0

g r9+ g 22rnn+ g 33r+ 2gl2 r,+ 2g 13r+ 2g 23r.

+ f1 e 2r, f3 r
+ r + f r (33)

glleE9+ g22nn+ g 336+ 2gl2e •+ 2g 13e+ 2g 230n

+ fleE+ f 20n+ f30ý = 0

relating the numerical coordinates , to the cylindrical coordinates

(x,r,8) in the physical plane. Equivalently, these equations can also be

written in Cartesian coordinates (x,y,z) as

g x+ fx= 0

g11 yý+ g22ynn+ g33y4•+ 2g12yAn+ 2g13yEý+ 2g23ync

+ f ly + f2yn+ f 3 (0 (34)
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9gll z + g22 zn+ g33 z 2g12 zn+ 2g 13z+ 2g2 3 Zn

1 2 3+ flz + f2Zn,+ f zC= 0

where y = r sinO, z = r cose, and 8 is the circumferential or girthwise angle

measured from the keel to the waterline. The control functions fi are the

same in both coordinate systems, and, in principle, equations (33) and (34)

yield the same numerical coordinates if the same control functions are em-

ployed. Numerically, however, the x1 -coordinates used to specify the hull

geometry influence the accuracy of the calculated numerical coordinates due to

truncation errors. Since, for ship hulls the variation of the surface coor-

dinates (y,z) is much smoother than that of (r,O) it is preferable to use

equations (34) instead of (33). The numerical coordinates thus obtained are

then transformed to (x,r,a) which are used to specify the velocity components

in the equations of motion.

For the numerical solutions, it is convenient to rewrite equations (34)

in the form

g (x - 2axe) = 0 (35a)

g (y,,- 2ay,) + g22(Ynn- 2byn) + g 33(yY _ 2cy,) (35b)
+ 2g 12n+ 2g 13y• + 2g23yn= 0

g (z 2az ) + g22 (Z- 2bz n) + g33 (z - 2cz) (35c)

+ 2g 2ztn + 2gl3 z + 2g 23Z = 0

where a, b and c are modified control functions defined by

" ~fl
2a : -

2g
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2b = - f (36)
2g 2 2

2c =- f__

2g
3 3

In order to solve equations (35), it is necessary to prescribe the boundary

conditions and the control functions. The boundary conditions are determined

by the preselected size of the solution domain and the desired number of grid

points in the axial (4), radial (n) and circumferential (c) directions.

In all the calculations considered here, the first station = 1, is

located at x = 0.3 where the boundary layer is thin, and the last station 4 =

LL is placed in the far wake where upstream viscous diffusion is negligible.

In the radia' direction, there are MM points with n = 1 corresponding to the

hull surface or wake centerplane, and n = MM being the exterior boundary. The

latter is placed typically at a distance of the order of one ship length from

the hull for calculations corresponding to an unrestricted stream.

Alternatively, it may be chosen to coincide with the walls of a wind tunnel or

towing tank. In the girthwise direction, NN stations are used, with ý = 2 and

NN - 1 corresponding to the keel (0 = 00) and the waterplane (0 = 900),

respectively; and C = 1 and NN are used to enforce the plane-of-symmetry

conditions. In order to avoid a sudden change of numerical grid near the

stern region where the hull ends abruptly, an imaginary wake centerplane is

specified to ensure a smooth variatiin of geometric coefficients in this

region. The vertical extent of the wake centerplane is reduced linearly up to

a station 4 = LE in the wake. The depth of the centerplane is kept constant

beyond that station.

In general, the grid control functions fi are three-dimensional and can

be arbitrarily specified to yield the desired grid distribution. There are,

however, no general rules for the determination of the most appropriate grid-

control functions. For the present study, the grid-control finctions useJ in

Chen and Patel (1985b) were modified and generalized to provide control of the

numerical coordinates in the radial as well as the girthwise directions. In

particular, the function f2 which controls the grid concentration in the -n-

direction is continuously adjusted to achieve a direct control of the grid

spacing between the constant-n lines. The grid-generation technique is out-

lined below.
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The choice of x : x(g) simplifies the control function a because it is

uniquely determined from equation (35a), i.e.,

xE

In other words, the function a is related to the distribution of the axial

stations, which is chosen to concentrate grid points near the stern and in the

near wake.

In a similar manner, the function c is related to the grid distribution

in the circumferential or girthwise direction, 6 = tan-l(y/z). In general, c

can be a function of ý,n and ý to yield desired grid spacings between the con-

stant-ý lines in the ý- direction. For the present applications, however, it

is sufficient to employ a one-dimensional control function c(4) which is fixed

in the axial as well as the radial directions, i.e.,

0
2c= 6-- = fn(R only) (38)

with 0 = O(M) prescribed on the outer boundary at the upstream station.

The specification of the function b, which controls the grid distribution

in the n-direction, requires greater care since it must satisfy several con-

flicting requirements at the same time. First, in the present treatment of

the wall boundary conditions using wall functions, it is necessary to require

at least two near-wall grid points to lie in the logarithmic law-of-the-wall

region (say 50 < y+ < 500). Second, it is desirable (although not necessary)

to have an orthogonal grid in the wall region to facilitate the application of

the boundary conditions. Third, the grid concentration must be such that

there is a sufficient number of points across the boundary layer whose thick-

ness varies greatly in the axial as well as in the girthwise directions.

Fourth, and perhaps the most difficult, is the problem of obtaining a suffici-

ently accurate solution in the neighborhood of geometric singularities. It is

obvious that a three-dimensional control function is needed to make the local

adjustments to meet all these requirements.

As noted above, the grid-control functions used in Chen and Patel (1985b)

were modified by adding a three-dimensional local correction function to
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provide greater control of the grid distribution near the hull surface and the

wake centerplane. We choose

b = b + b (39)0 c

where bo is the two-dimensional grid control function given in Chen and Patel

(1985b), i.e.,

_l332b 0  1 L (rn+ _r ' 2)
rn g2n rg22

33~ (40)Z_ +(Z 9-+ )
Szn n 9g 22 z2

= fn(t,n)

Since this control function is obtained from the prescribed grid distribution

z = z(t,n) and the associated transverse curvature z on the keel plane C =
2, there is very little control for the grid distribution away from the
keel. This was evident from the results presented in Chen and Patel (1985b)

which showed a lack of near-wall grid concentration around the waterplane,

especially in the stern and the near-wake regions. In order to improve the

resolution in the wall layer and the near wake, a three-dimensional correction

function is applied to control the normal distance distribution in the girth-

wise direction by

bc = cA(R,•)ed(n' 2 ) (41)

where A(t,ý) n(,2, - 1n(t,2,2)

and n(t,2,0) is the normal distance between n = 2 and the body surface which

is n = 1. The control parameters c and d are chosen to yield the desired grid
distributions. Note that A(R,O) = 0 if n(t,2,0) = n(t,2,2) for all girthwise

stations. In other words, if the control function b is updated continuously,

the final correction function will be zero when the solution converges, and
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the normal distance thus obtained will be constant in the girthwise direc-

tion. It is, however, not necessary to satisfy this relation exactly although

it is desirable to be able to control the near-wall grid spacing directly.

For the present calculations, a compromise solution was arrived at by updating

b only a few times during the iterative process and then fixing it when a

satisfactory grid distribution was reached. The correction function bc was

updated every 20 iterations between iteration numbers 40 and 200, and then

kept unchanged for subsequent iterations. The grid control function thus

obtained was enforced only upto a stati~n E = MIB near the stern. Beyond

that, the f 2 function is reduced linearly to zero, and remained zero in the

far wake. For consistency, the grid distribution z(E,n,2) on 6,e keel plane

was allowed to move freely based on the prescribed function b in this

region. It should be noted here also that the correction function diminishes

exponentially away from the hull surface and wake centerplane. This leads to

a nearly-orthogonal numerical grid for much of the solution domain while

providing the control of the grid spacing in the wall layer.

Equations (35), with the control functions specified by equations (37)

through (41), were solved by an exponential-linear scheme described in Chen

and Patel (1985a). With this scheme, the discretized equations (35) can be

written

(2glla coth a + 2g22b coth b + 2g33c coth c)

= (gil a csch a) E n,'4(e- a +l'n,'4+ e a t l'n,

+ (g22b csch b) En,(e-b + e4b

+ (g33c csch c) E (e-C •,n,•+l+ eC* n

+ 0.5g12 4 +

+ 0.5g 13

+ 0.5g 2 ( + , - , ) (42)
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where * represents either y or z. With the Neumann boundary conditions speci-

fied on all boundaries of the constant-a stations, equations (42) are solved

by a tridiagonal-matrix algorithm using line-by-line iterations.

(b) Finite-Analytic Discretization for the Transport Equations

In order to correctly handle the elliptic nature of the flow past arbi-
trary three-dimensional shapes, the finite-analytic method of Chen and Chen

(1982, 1984) is revised and extended to solve the five transport equations for
mean velocities (U,V,W) and turbulence quantities (k,e). The most general

version of this method would involve an analytic solution of the linearized

transport equations in a three-dimensional element and would result in a 28-

point discretization formula. While such a scheme may be required for the

solution of highly three-dimensional flows, for applications to many aerody-

namic and hydr,-Ivnamic problems it suffices to use a simplified method to
reduce computer time and storage. Here, we adopt a hybrid method which com-

bines a two-dimensional local analytic solution in the nc-plane with a one-
dimensional local analytic solution in the E- direction. Details of this

numerical scheme are described in the following.

In the finite-analytic approach, equations (24) are locally linearized in
each rectangular numerical element, AE. Ti = 4 = 1, by evaluating the coef-

ficients of the convective terms at the interior node P of each local element

(Figure 4), i.e.,

11 22 33 (3gpllU + gp22"nn + gp3• 2VC YE + 2(B )pn + 2(A )p@ + (R )pYt (S )p (43)

Introduction of the coordinate-stretching functions

n- (44)

in equation (43) reduces it to the standard three-dimensional convective-

transport equation described in Chen and Chen (1982, 1984), i.e.,

S,+ * = 2C* ,+ 2B 1+ 2A4 ,+ R4t+ (SP)p (45)
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qVPw -W-

where A 33 22 -17 , R )p

Vg ' Vg p Vgp

for a numerical element with dimensions

* 1
V4T

An* = k 1 (46)

*1
= h

For the type of applications considered here, it is convenient to decom-

pose equation (45) into a one-dimensional and a two-dimensional partial dif-

ferential equation in the following way:

2C .- * .+ R0 t + S:= G(&, n , , t) (47)

Sn ,+ T , .- 2BO n.*- 2A.= G( $ n . .t) (48)

"If we furthe," require the source functions G and S to be constant in each

local element and the time derivatives to be approximated by a backward-dif-

ference formula, equations (47) and (48) reduce to the standard one- and two-

dimensional convective-transport equations described in Chen and Chen (1982),

respectively. The analytic solution of the one-dimensional equation (47) can

be readily obtained as:

0 = a(e2CE -1) + b* + c (49)

By substituting the exponential-linear solution (49) into equation (47), the

source function G(O,O,O,O) = g becomes
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g Q (2C€ ,- ,+ R Ot+ S )p

(C + C 0) C- (0p_ n-I
= DCu + C ) P - C U@ - C + - (pU_ D D ) + (S )p (50)

with

Ce cz Ce" Cz

-C CeCU - sinh C1 , CD -X sinh C2

where the subscripts U and D denotes the upstream and downstream nodal vales

(Figure 4), respectively, superscript (n-i) denotes the value at the previous

time step, and T is the time step.

By specifying a combination of exponential and linear boundary functions,

which are derived from the natural solutions of the governing equations, on

all fodr boundaries, n = +_ k and • ± h, of the transverse section of each

local element (a-plane), i.e.,

a(k.*) =n (e2AM - 1) + bn c n

a= as (e - 1) + b s + cs

* (2Bn - 1) * (1
(,h) ae (e + ben + ce

(n*,-h) aw (e2Bn 1) + bwn +

where a, b and c are constants, the two-dimensional equation (48) can be

solved analytically by the method of separation of variables or any other

analytic technique. Details of the solution procedure are described in Chen &

Chen (1982, 1984). When the local analytic solution thus derived is evaluated

at the central node P of the element, the following nine-point finite-analytic

algebraic equation is cbtained:

p = CNEJNE+ CNW@NW+ CSE SE+ CSWVSW + CEC4 EC+ CWC ýWC

+ CNC NC CSC SC Cpg (52)
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where

eBk
SC = 2cosh Bk A

CNC : e-2BkCsc

eAh
WC 2 cosh Ah B

C EC =e-2AhCwc

e Ah+Bk
CSW =4 cosh Ah cosh Bk)( A B

CSE = e- 2 AhCsW

CNW =e-2BkCsw

CNE e-2Ah-2BkCsw

C h tanh Ah k tanh Bk
P 2A (I-PA) k 2B B

PA= 4E 2 Ah cosh Ah cosh Bk coth Ah

P + ~Bh coth Bk (
B Ak oth Ah A-

and

-_ ()m(x mh)

mUm-I[Ah)2+ (Xmh)2]2cosh VA2+ B2+ >2 k

The above coefficients are simple rearrangements of those given in Chen &

Che,, but are mo-e corvenient for efficient numerical calculations. Note that

-cwz of tneam cre interrelated as follows:
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CNC + CSC =PA

CEC + CWC = PB 53)

CNE + CNW + CSE + CSW = 1 PA - PB

Since both PA and PB are positive and (PA + PB) 1, the finite-analytic

coefficients are Plways positive. Also, the exponents in these coefficients

provide a gradual upwind bias as the cell Reynolds numbers j2AhI and/or j2Bkj

increase. Thus, the behavior of the convective-diffusion equation is properly

captured and numerical diffusion is minimized due to the inclusion of all

corner points. For large cell Reynolds numbers, the series summation in E2

can le avoided by considering the asymptotic expressions of PA and P8 based on

the theory of characteristics, i.e.,

Ak coth Ah > Bh coth Bk : PA= O, PB= 1 - Bh coth Bk/Ak coth Ah

Ak coth Ah < Bh coth Bk : PB= 0, PA= 1 - Ak coth Ah/Bh coth Bk

Since the "downstream" influence is negligible at large cell Reynolds numbers,

the above approximations do not introduce a significant error in the solution,

but the computing time is greatly reduced.

By substituting the nonhomogeneous term g from equation (50) into equa-

tion (52), a twelve-point finite-analytic formula for unsteady, three-dimen-

sional, elliptic equations can be obtained in the form

Cp 1{
P=1 + CR {CNEPNE+ CNWVNW+ CSE SE+ C SW4 SW+ CECGEC+ CWCeWC

1+ C[CuNC+ CD + p

+ C P ) - Cp(Sf)p} (55)

or

1 8 n-I

{C[R C nb ýnb+ CP(Cu D+ - Cp(ST)p} (55a)
I+C p[Cu+ C D + T]3
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where the subscript nb denotes neighboring nodes (NE:northeast, NW:northwest,

etc.). It is seen that *p depends upon all the eight neighboring nodal values

in the transverse plane as well as the values at the upstream and downstream
n-l Whntecl

nodes U and *D9 and the values at the previous time step np . When the cell

Reynolds number 2C becomes large, CU + 2C/2 = (C ) and CD 0 0, and equation

(55) reduces to the partially-parabolic formulation of Chen and Patel (1985a)

which used CU = (C,)P and CD = 0. Thus, the extension of the earlier par-

tially-parabolic method to the present fully-elliptic form is straightforward,

and if 0D is obtained from the previous time step, the same algorithm can be

employed for both formulations.

Since equations (55) are implicit, both in space and time, at the current

station of calculation, their assembly for all elements results in a set of

simultaneous algebraic equations. These equations are solved by the tridiag-

onal-matrix algorithm. Because it is not necessary to obtain a fully-

converged intermediate solution for steady flows, only ten line-by-line inter-

nal iterations are used during each global sweep. Furthermore, the finite-

analytic coefficients appearing in equations (55) are not updated during these

internal iterations for economy of computation time.

(c) Solution of the Continuity Equation: Velocity-Pressure Coupling

If the pressure is known, equations (55) can be employed to solve the

five convective-diffusion equations (24) for U,V,W,k and c. However, the

pressure is not known a priori and must be determined by requiring the velo-

city field to satisfy the equation of continuity (32). Since a direct method

for the simultaneous solution of all six equations is not feasible with pres-

ent computer capacity, it is necessary to convert the equation of continuity

into an algorithm for the calculation of the pressure field. The SIMPLER

algorithm of Patankar (1980) has been modified and extended for this purpose.

A staggered-grid system is adopted. Figure 5 shows the locations of the nodes

for J,V,W, and p in this grid. The turbulence quantities k and c are evalu-

a':ec at the pressure nodes. The dashed lines represent the control volume

-aces, and the pressure is calculated at the center of the control volume.

:or convenience, Ud, Vn, We and pp in Figure 5 are assigned the same index,

i.e., they are denoted by U EW V nW W n7 and P n' respectively. Recall
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that the velocity components U,V, and W are in the longitudinal, radial and

circumferential directions. In other words, they are, in general, neither

perpendicular to the control surfaces nor in the direction of the coordinate

lines. However, due to the choice of the cylindrical polar coordinates in the

physical plane, these components do not become parallel to the control sur-

faces.

In the staggered grid, the twelve-point finite-analytic formulae (equa-

tion 55) for the momentum equations yield the velocity components:

1 8 (Ru)d n-l

Ud R { Cnb Unb + C d[(C)dU + T u- (Su]}.ID__)d 1 dCnbdn(+D)dUd+'- d --- d

I+Cd(Cu+ C +

8 (-_n n- nV Cn _C {1 CnbV nb+ Cn[(Cu)nVu + (CD)nVd+ T n (S )O]}I+Cn(Cu+ CD+ R )n I

n U D (T C
8 (R )e

CeeC C eR nbWnb+ Ce[(Cu)eWu + (CD)eWd+We " (S ) ]}1I+Ce(Cu+ CD+ -W ) I
e DT e

(56)

where Cd, Cn and Ce are the finite-analytic coefficients Cp evaluated at the

staggered velocity nodes d, n and e in Figure 5. Note that the above equa-

tions contain the pressure-gradient terms inside the source functions. An

equation for this unknown pressure field is obtained as follows.

If we decompose the actual velocity field (U,V,W) in the momentum equa-

tions (56) into a pseudovelocity field (U,V,W) plus the pressure-gradient

terms contained in the source functions, i.e.,

Cd RU

C dR 1 2 3U d = U d" RU 1-i (bip+ bP n + b lpýld
I+Cd(Cu+ CD+ + bp

C RV
C n J!_ b1 + 2 3 (7Vn n {-+ (b A + b2 pn+ b 2p)}n (57)

+Cn (Cu+ CD+T -n
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W-' C e I R 1 _ ,. b 2 p n -b 3 -,
We We- R J 3 3 3 e

-We+Ce(Cu+ CD+T) )e

so that the pseudovelocities contain no pressure terms, then an equation for

pressure can be derived by requiring the velocity field to satisfy the discre-

tized equation of continuity (32), i.e.,

1 1 1 1 1 1 2 2 2(DlU + b2V + b 3W)d- (blU + b 2V + b 3W) u+ (bIU + b2V + b3W)n

(b2U + b2V + b2W)s+ (b3U + b3V + b W)e- (b3U + b3V + b3W)w= 0 (58)
1 2 3s 1 2 3 e ( 1U b2V b3W=0(8

The resulting pressure equation will contain many pressure nodes (see Muraoka

(1980, 1982) for example) if nonorthogonal coordinates are employed. It is

therefore desirable to simplify the algorithm by introducing modified

pseudovelocities (U,V,W) by decomposing the velocity components as follows:

Ud = Ud - dd(PC PP)

Vn = Vn - dn(PNC- pP) (59)

We We - de(PEC- Pp)

where

(RU bl)dCddd R
Jd[1 + Cd(Cu+ CD+ RU)d]

(R b •) C
dn = 2 n n (59a)

rJnD + Cn(Ci+ CD+ --) n
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d(RW b 3)e Ce
d e RW
Je [1 + Ce(C u+ CD + '-)e]

The modified pseudovelocities (UV,W) defined above still contain part of the

pressure-gradient terms if the coordinate system is nonorthogonal (i.e., bi

for i * j, see equation 57). These pressure-gradient terms can be evaluated

from the pressure field known at the previous time step or iteration without

losing any accuracy or generality. If we require the velocity field to

satisfy the equation of continuity (58), a simpler pressure equation can be

derived in terms of the modified pseudovelocities (U,V,W). Note that eighteen

velocity components are involved in equation (58) for each control volume.

However, due to the staggered grid system employed here, only six of these,

namely, Ud, Uu, Vn, Vs, We, and Ww, can be obtained directly from the govern-

ing equations (56). It is, therefore, necessary to approximate the remaining

twelve by interpolations. A simple linear interpolation is used here to

evaluate these from the velocity field known at the previous time step or

iteration, so that the continuity equation becomes

(b1 U (b1 U+(b2 V) 2 3) 3 (60)Wn-(b 2V (b 3 e- (b 3 w + D1I = 0 (60)(biU)d -(b 1U)u+ (b 2V)n- bV)s+(bW- bW) 1

where

D 1 (b 1 V bIW)d (bV 1 (bU + 2 W)2

2 2 3u 1 3 n- (b 1U 3W(bV+bWd bV+b 3W)u+ (bU+ bbU Wb)~

+ (b3U + b - + b3V) (60a)1 b2Ve b1  2 w

is the mass source obtained from the velocity field at the previous time step

or sweep. An equation for pressure is then derived by substituting equations

(59) into (60), i.e.,

apPp = adPD + aupU + anPNC + aspSC + aePEC + awpWC - D (61)

where

ad = (bl)d dd
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a= (b ) dIlu u

an (b•2 ) d

as = (b)2 d (61a)

2 s s

ae 3(b)e de

aw (b 3 d
3)w w

ap= ad + au + ae + aw + an + as

and

D (bI U)d- (b U)u + (b V)2 (b2 V)s + (b3 W)e" (b3 W)w" D1  (61b)

The modified pseudovelocities (U, V, W) contain the neighboring nodal

values of velocity, source functions, and part of the pressure-gradient terms.

All of them can be evaluated from the information known at the previous time

step or iteration. Therefore, apart from the interpolations for Dl, the pres-

sure equation (61) is still an exact algebraic representation of the equation

of continuity (32). In this fashion, the pressure field can be obtained

directly from an estimated velocity field.

Although the guessed pressure field can be updated directly by equation

(61), in practice the new pressure field may produce a velocity field which

does not satisfy the equation of continuity. An iterative procedure is there-

fore required to correct this erroneous velocity field to achieve more rapid

convergence. Here, a velocity-correction formula, similar to that used in the

SIMPLE algorithm, is derived in terms of the pressure-corrections.

If we denote the imperfect velocity field resulting from an imperfect

pressure field p* by (U*,V*,W*), then the discretized momentum equations (59)

can be written as

Ud = Ud - de(PD- Pp)
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* * (62)
Vn = Vn - dn(PNc- pp )

* ^* * *

We = We - de(PEC- Pp)

In order to improve the guessed pressure field, such that (U*,V*,W*) will

eventually satisfy the equation of continuity, one needs to know how the

velocity components respond to a change in the pressure field. Such a rela-

tion can be obtained by subtracting equation (62) from equation (59), i.e.,

Ud - Ud = (Ud- Ud) - dd(pD - pp)

Vn - Vn = (Vn- Vn ) - dn(PNc- pp) (63)

We - We = (We- We ) - de(PEc- P')

where p' = p - p* is the pressure correction, and (U-U*), (V-V*) and (W-W*)

are the corresponding velocity corrections. If we require the velocity field

to satisfy the equation of continuity (60), an equation for the pressure

correction p' can be derived. However, due to the implicit nature of the

velocity corrections arising from the pseudovelocities, the resulting pressure

correction equation would involve the pressure corrections at all grid points.

It is not necessary to retain such a complicated formulation because both the

pressure- and velocity-corrections are zero in the final converged solution.

Since both the pressure- and velocity-corrections become trivial when the

solution converges, it is possible to omit that part of the velocity-correc-

tions, (U - U ), (V - V ) and (W - W ), which represents the indirect influ-

ence of velocity corrections. With this approximation, the velocity-correc-

tions are expressed explicitly in terms of the pressure-corrections as

* 3

Ud = Ud - dd(PD- Pp)

Vn = Vn - dn(PNC- pp) (64)

W * SWe = We - de(PEC- Pp)
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By requiring the velocity field to satisfy the equation of continuity (58), a

pressure-correction equation is then obtained in the form

appp= adPD+ aupu+ anPNC+ aspsc+ aePEC+ awPwc- D (65)

with

S1 1* 2* 2* 3* 3*
D= (b IU ~d - (b1u u (b 2V n- (b 2V )s+ (b 3W)e- (b3W)W D 1  (65a)

where the coefficients ap, ad, etc., are as defined in equations (61a). Note

that the pressure-correction equation (65) is similar to the pressure equation

(61). Although, unlike the pressure equation, the pressure-correction equa-

tion is not exact, the approximations made influence only the rate of conver-

gence but not the final converged solution.

The systems of algebraic equations formed by the assembly of the pressure

and pressure-correction equations, (61) and (65), respectively, are solved by

the tridiagonal-matrix algorithm with several line-by-line internal iter-

ations. The finite-analytic coefficients ap, ad, etc., are updated in each

upstream to downstream global sweep, but remain the same during the internal
iterations.

(d) Boundary Conditions

For the calculation of ship stern and wake flows considered in this

report, it is assumed that the ship is symmetric about a vertical centerplane

and the waterplane is regarded as a plane of symmetry. The appropriate bound-

ary conditions are then as follows (see Figure 2).

(1) Initial or Upstream Section ( = 1)

The distribution of the velocity components (U,V,W) and the turbulence

parameters (k,e) are assumed known at an upstream transverse section either

from detailed boundary-layer calculations or from simple correlations. Bound-

ary conditions for pressure and pressure-correction are not required in the

present staggered-grid arrangement since the pressure is implicitly determined
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by the specification of the velocity components. Also, since the velocity

components are known, there are no corrections to be made, i.e. (U,V,W)u

(U*,V*,W*)u = (U,V,W)u.

(2) Exit or Downstream Plane

The exit plane is usually located in the wake far downstream from the

stern, and the zero pressure gradient (p,= 0) condition is specified there.

Since axial diffusion in the far wake is negligible, the exit conditions for

the transport quantities 0 = U,V,W,k,c in the momentum and turbulence-model

equations are simply 0 = 0.

(3) Body Surface (n=l)

For laminar flows, the numerical solution is usually carried out upto the

solid surface using no-slip conditions, i.e., U=V=W=O (see, for example, Chen

and Patel, 1987a). Strictly speaking, the same conditions should also be used

in turbulent flow calculations. Tnis, however, will require a large number of

grid points to resolve the large gradients in the near-wall region and, more

importantly, an appropriate near-wall turbulence model to account for the

wall-proximity effects. In view of the complexity involved in resolving the

near-wall flow, it is preferable to employ a simpler wall-function approach

which avoids the solution of the equations of motion and turbulence model in

the wall region. In the present study, the two-point wall-function approach

of Chen and Patel (1985a,b, 1988) is employed with necessary modifications to

determine the boundary conditions on a fictitious boundary (n=2) located in

the fully-turbulent logarithmic layer.

The present wall-function approach differs from the usual practice in two

respects. First, the effects of pressure gradients on the flow in the wall

region are taken into account by the use of a generalized law of the wall

giveo by Patel (1973), i.e.,

(1 + A y )112 - l + 1/2
Ut ! {in[a4. l+-~ +I2
UT 1K / ]+2[( + ATy ) - 1]} + B + 3.7 P (C6)
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in which U is the friction velocity defined by Ut : w/PU , y Re U.y
is the dimensionless distance measured in the direction normal to the surface,

Ap = Vp/ReU3 is the dimensionless pressure gradient, A is the dimensionless
shear-stress gradient which is approximated by 1/2 A , q is the magnitude of

p
the velocity, K = 0.42 is the von Karman constant, and B = 5.45. Second, we

ensure that at least two points (n = 2 and 3 in Figure 6) are located in the

logarithmic region and explicitly satisfy equation (66) at both. This avoids
the need for a separate analysis for the flow between the wall and the first

near-wall mesh point which is used in almost all previous applications of wall

functions. For the present calculations, as in the earlier study of Chen and

Patel (1985a,b, 1988), equation (66) is employed to improve the prediction of

the wall shear stress and the associated boundary conditions in adverse pres-

sure gradients, while the usual logarithmic law of the wall (i.e., A = -l =
T 2 p

0) is used in favorable pressure gradients.

In the present procedure, a value for U T is assumed and the boundary

conditions at n = 2 are determined from equation (66) and the assumptions of

local equilibrium for k and c , i.e.,

) 1/
q2 0~na4_( + NY2 + 1/2 + 1,/2

2 = ln[ + A]) + B + 3.7 A (67a)
T (1 +lA'y + 1/2) p

2
Ut

k = - (67b)

3U.
2 = -T (67c)

(Y2

The numerical solution then provides the velocity at n 3 and U T is updated
by requiring this velocity also to satisfy equation (66), i.e., by solving

q3  1 4 (1 + A'y3 + 1/2 _ 1
=- - n+ /2 + ]+2( + 1/2 _ 1]) + B + 3.7 A (68)

U K (1 + A+y3 ) + l P
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by a root-finding technique. Thus, an iterative procedure is used to satisfy

the wall boundary conditions in the case of turbulent flow, and to deter-

mine U T. Typically, five iterations are required to obtain satisfactory

convergence.

By anchoring the solution at two near-wall mesh points on the law of the

wall, the present wall-function approach removes much of the sensitivity of

the numerical solution to the location of the first mesh point which has been

observed in previous treatments. The procedure is quite straightforward for

two-dimensional and axisymmetric flows. For three-dimensional flows, however,

an additional assumption concerning the direction of the velocity vector is

required to determine the individual components (U,V,W) because the law of the

wall gives only the velocity magnitude. In Chen and Patel (1985a), it was

assumed that q2 is parallel to the wall and there is no rotation of the veloc-

ity vector between n=2 and n=3 in planes parallel to the surface. Although

the latter approximation resulted in some simplification in the application of

the wall-function boundary conditions, it led to the underprediction of the

secondary velocities in the stern and wake regions. The approach of Chen and

Patel (1985a) was, therefore, modified to account for the rotation of the

velocity vector in the wall layer.

To use the law-of-the-wall formula (66), it is convenient to relate the

velocity components (U,V,W) in the governing equations to the physical compon-

ents (q, q , q ) along the body-fitted coordinates as follows:

S= (U,V,W) = qq n+ q j (69)

where { T n and T are unit tangents in the body-fitted coordinates given by

16= 1 NrO

"1911

1i -= (x9 , rn, r8n) (70)
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and the inverse relations are

q' = Vj (b'U + b'V + b3 W)

qT n 225z( 2 U+b2V +2 W)(72)

qC g3(b 3U + b3V +b 3W)

The geometric coefficients appearing in the above relations are evaluated at

the wall, n=l, so that the rotation of the velocity vector can be determined

relative to the surface coordinates. The projection of the velocity vector on
* n

the surface, q (i.e., without q component) and the angle B between this and

the i-directiOn of the surface coordinates are given by

q = q I + 173)

tan B = q sin Y

q + q cos Y
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where Y is the angle between T and T Alternatively, one can also evaluate
the components q and q when the magnitude and direction of the vector q are

specified, i.e.,

q q sin a
sin y

(74)

q =q cos B - q cos y

In the present procedure, we first impose the constraint that q2 is
parallel to the wall and therefore require q2= 0. However, instead of the no

rotation (i.e., a2 = 83) assumption imposed in Chen and Patel (1985a), the
effect of the velocity vector rotation in the near wall region is taken into
account by determining the direction of q2 using a quadratic extrapolation of
the angles a3, a4 and a5 of the velocity vectors at n = 3, 4 and 5. The

angle 82 thus obtained is then used in equation (74) to calculate the velocity
components at n = 2 from:

q q cos 82 - q2 cos Y

qC q2 sin 62

2  sin y

q2  0

Note that q2 = q2 since it is assumed that q2 is parallel to the wall, i.e.
-=0.

The iterative, two-point, wall-function approach for a three-dimensional
flow can be summarized as follows. With an assumed U , and therefore q2 from
equation (67), equations (75) give the components qf, q2 ' q . and equations

(71) give the components (U2 ,V2,W2 ) which are required as the boundary condi-
tions for the numeri-al solution. In turn, this solution gives (U3 ,V3,W3 ) and

hence q3. A new value of U is obtained from equation (68), and equations
(72) and (76) are used to find q and 8 at n = 3, 4 and 5 for the quadratic
extrapolation to determine 82. Finally, q2 is obtained from equation (67)
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using the new UT, q2 , q2 , qn found from equations (75). These provide the

updated boundary conditions for the numerical solution and the procedure is

iterated to convergence.

It should also be noted that in evaluating the distance y normal to the

wall, required in the law of the wall, it is necessary to determine the direc-

tion cosine between Tn and 3 . This is given by

b 2 x + brn + b2r(7COS a = Tn n - 1 • r (76)

S9gg2 2g22

in which all the geometric coefficients are again evaluated at the wall, i.e.,

at n = 1.

(4) Outer Boundary

In order to simulate the flow past a body in an unrestricted uniform

stream, the outer boundary of the solution domain is placed at a large dis-

tance from the body. The boundary conditions then become

U 1 I, W = O, ak a- p = 0 (77)

The radial component of velocity (V) at the outer boundary is not specified

but is determined by the solution. The outer boundary can also be made to

coincide with the walls of a wind tunnel or towing tank, in which case the

boundary conditions are identical with those described in the previous sec-

tion.

While the calculations presented in this report are of the type described

above, we also recognize that the outer boundary can be made to coincide with

a surface in the inviscid flow provided appropriate match conditions are

provided. This viscous-inviscid matching approach is not pursued further.

(5) Symmetry Planes

On the centerplane, i.e., the ship keel and the wake centerplane,
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and on the undisturbed free surface, i.e., the waterplane, symmetry conditions

a3U aV 3k ac (78)w O, a•-•- • B -0(S

are enforced for the transport quantities.

(6) Initial Conditions (t = 0)

For the steady-flow calculations considered here, the initial conditions

for the transport quantities ý E 'U,V,W,k,e) are taken directly from the

values known at the immediately upstream station during thc first sweep and

the pressure is assumed to be zero throughout the flow field. Although it is

possible to assume more realistic initial conditions and thus accelerate the

convergence of the solution, these rather crude initial conditions have been

used not only to simplify the use of the method but also to demonstrate its

versatility.

(e) The Overall Solution Algorithm

With the grid distributions employed for the large Reynolds numbers

considered here, the cell Reynolds number in the E - direction is quite large.

Consequently, in equations (55), the influence coefficient CD is much smaller

than CU. In other words, the streamwise diffusion is small compared to stream-

wise convection dnd transverse diffusion. This enables us to adopt a partial-

ly-parabolic solution algorithm with minor modifications, rather than a fully

iterative scheme, to solve the elliptic equations. As noted earlier, the pre-

sent twelve-point finite-analytic formula contains only one additional influ-

ence coefficient CD which is not present in a partially-parabolic formula-

tions. If *D is evaluated using the value known from previous sweep or time

step, then the partially-parabolic solution algorithm of Chen and Patel

(1985a) can be employed also to solve the elliptic equations. Thus, the

influence of streamwise diffusion in the fully-elliptic equations is conven-

iently taken into account without significantly increasing computer storage or

computatio. time.

For transient problems, where the initial and boundary conditions are

properly specified, the overall numerical solution procedure may be summarizEc

as follows:
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1. Construct the body-fitted coordinate system for the given body shape

and ,olution domain, and calculate the geometric coefficients

bj' gIj, J, etc. from equations (27) to (31).

2. Specify the initial conditions for the velocity and turbulence fields.

Set p = 0 everywhere initially.

3. Specify the velocity and turbulence profiles at the first, station I = 1

(these may be time dependent).

4. Calculate the finite-anaiytic coefficients for momentum, pressure, and

pressure-correcticn equations at the downstream station from equations

(,2) and (61), respectively. Store only the finite-analytic coeffici-

"ets ad, ar; and a, fo- the pressure equation.

5. Solve the momentum equation- based on the updated-pressure field to

oatalrn the starred veiccity field (U*, V*, W*). This system of alge-

braic equations is solved by a tridiagonal matrix algorithm.

6. Calculate the mass source D*, and solve the pressure correction equa-

tion (65) by tridiagonal matrix algorithm.

7. Correct the velocity field using the velocity-correction formulae (64),

but do not correct the pressure field.

8. Update wall-function boundary conditions using the newly-obtained

velocity field and repeat steps (5) to (7) for several internal itera-

tions.

9. Calculate the pseudovelocities ',U, V, W) in terms of the velocity field

from equation (59). Store only D for later use.

10. Solve equations (55) for turbulence quantities (4 = k,c) by tridi-

agonal-matrix algorithm.

11. March to the next downstream station and repeat steps (3) to (9).

12. After reaching the last downstream station, solve the pressure equation

(61) by tridiagnonal matrix algorithm. Several iterations from down-

stream to upstream are employed to update the three-dimensional ellip-

tic pressure field.

13. Repeat steps (3) to (11) for several sweeps until both the pressure and

velocity fields have converged within a specified tolerance.

14. Return to step (2) for the next time step.
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15. Stop if the steady-state solution is achieved, or if time exceeds the

maximum time period assigned. For steady-flow calculations, one may

relax the convergence criterion in step (12) and use a larger time

increment for the intermediate solutions.

In the present study, only one sweep was used in step (12) for each time

step. Also, as noted earlier, instead of specifying the initial conditions

for velocity and turbulence profiles everywhere at t = 0, only the profiles at

the first station E = 1 are specified, and the downstream profiles are taken

from the immediately upstream station (i.e., 0p = oU at t = 0) during the

first global sweep.

IV. SOME NUMERICAL ASPECTS OF THE METHOD

It was noted in Section II that many components of the present calcula-

tion method have been tested by applying it to study the flow past geometri-

cally simpler bodies. In this report, therefore, we will be specifically

concerned with the flow around ship hulls.

Before discussing the selection of specific hull forms as test cases and

presenting the corresponding results, it is useful to evaluate and document

certain numerical aspects of the method. These are discussed in relation to

the calculations performed for one of the test cases, namely the SSPA Liner,

the physical aspects of which will be considered in the next section. For the

purposes of the present section it is simply a representative hull form which

is used to examine the convergence properties of the algorithms, dependence of

the solutions on the grid and size of the numerical solution domain, and the

computer times required to obtain acceptably accurate solutions.

IV.1 CONVERGENCE

Two important measures of the performance of an iterative numerical

method are the number of iterations required to obtain a converged solution

and the influence of the grid. Here, we shall examine first the convergence

history of several representative quantities for a typical calculation with a

(50 x 30 x 15) grid in the (x,r,G) directions. In this particular applica-

tion, as well as in all others, the calculations were performed for 160 time

steps (or sweeps) to assure full convergence of the solutions although much

fewer sweeps are actually required to obtain an acceptable solution.
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Figure 7 shows the convergence of the distributions of pressure, C (

2p), and friction velocity U, along the keel and waterline coordinates and

their extensions into the wake, and wake centerline velocity Uc. It is seen

that all these quantities converge monotonically in less than 60 time steps or

global sweeps. Recall that the solutions were started with a consLdnt ambient

pressure (p=O) throughout the solution domain. The calculated pressure and

velocity fields clearly capture all the important features of the final con-

verged solutions in less than 20 sweeps. This is particularly encouraging

because it ellninates the need for generating an initial pressure field from a

potential-flow calculation.

Othe' tests of convergence of the solutions made on the mass source terms

appearing in the pressure and pressure-correction equations also showed mono-

tonic convergence similar to that depicted for the flow parameters shown in

the above figures.

IV.2 GRID DEPENDENCE

Calculations were performed with four different (x,r,O) grids in the

solution domain: {0.3 < x < 4.5, rs < r < 1.0, 0 < 0 < 7r12} , to examine the

sensitivity of the numerical solutions to grid refinement. Some information

on these calculations is given in Table 1, and typical views of the four grids

are shown in Figure 8. In the stern and near wake regions, the finest grid,

(74 x 30 x 21), has nearly twice as many nodes in each direction compared with

le coarsest one, (41 x 15 x 12). The coarsest grid calculation converged in

only 15 iterations and required only about 40 cpu seconds on the CRAY

XMP/48. On the other hand, the finest grid required about 30 cpu minutes to

achieve the same level of convergence. This is due to the significant

increase of the number of grid nodes as well as the number of global sweeps

(110) needed for convergence.
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Table 1. Summary of Grid Dependence Tests

CASE ==> I i III IV

Grid points
in x-direction 41 74 50 74

in r-direction 15 15 30 30

in a-direction 12 12 15 21

Total nodes 7,380 13,320 22,500 46,620

Time Step, T 1.0 0.5 0.3 0.5

Memory, 1O6 0.32 0.51 0.84 1.63

cpu, sec/iteration 2.6 5.3 6.0 16.6

Iterations for 15 60 55 110

convergence

Total cpu (secs) 40 320 330 1830

Figure 9 shows the results obtained with the four grid arrangements with

regard to the flow parameters considered before. It is quite evident that the

three finer grids yield nearly identical results. On the other hand, the

solution with the coarsest grid shows some departure from the other three.

This is presumably due to an inadequate numerical resolution and less accurate

specifications of boundary conditions at the hull surface and along the wake

centerline. Nevertheless, it is quite encouraging to note that even the

coarsest grid calculation is able to capture many of the important features of

the flow which are evident from the data discussed later. Consequently, the

coarse grid solutions may be used to guide the selection of principal param-
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eters in a design process. Refined calculations can then be made in regions

where significant variations in body geometry or flow features occur.

IV.3 SOLUTION DOMAIN

In some earlier studies of well known two-dimensional, axisymmetric, and

simple three-dimensional bodies, it was found that, with the simple uniform

stream boundary conditions employed here the numerical solutions were quite

sensitive to the size of the solution domain. Thp most critical quantity to

be examined in this regard is the pressure distr ,..tion since its influence

penetrates much farther into the inviscid-flow region compared to the velocity

field. In order to properly capture the entire zone of viscous-inviscid

interaction, the outer boundary should be placed at a distance sufficiently

far away from the body such that the uniform flow and zero pressure conditions

are indeed appropriate. Similarly, the downstream boundary must be located in

the far wake where upstream propagation of pressure becomes negligible.

For the present applications to ship stern and wake flows, we have varied

the location of the outer and downstream boundaries over a wide range to

examine the influence of domain size on the solutions. Calculations were

performed for four different combinations of downstream and outer boundaries,

namely

0.3 < x < 23.1, rs < r < 2.00 with a (57 x 35 x 15) grid,

0.3 < x < 4.53, rs < r < 0.95 with a (50 x 31 x 15) grid,

0.3 < x < 1.95, rs < r < 0.47 with a (45 x 27 x 15) grid,

0.3 < x < 1.34, rs < r < 0.22 with a (41 x 22 x 15) grid.

The grids for the three smaller domains were obtained by simply deleting an

appropriate number of outer and downstream grid lines from the grid generated

for the largest solution domain. Therefore, the four solutions correspond to

essentially the same grid distributions. It is seen from Figure 10 that the

solutions with the two larger domains are essentially the same. It is also

clear that the smallest domain is too small to correctly predict the pressure

distribution over the hull. These calculations suggest that domain dependency

can be eliminated by choosing an outer boundary which is farther than about a

half ship length from the axis, and the downstream boundary at a similar
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distance from the stern. For all remaining calculations we have chosen the

domain 0.3 < x < 4.5, rs < r < 1.0 , which is more than adequate to capture

the viscous-inviscid interaction.

IV.4 COMPUTING TIMES

The initial development of the present computer code and some preliminary

calculations were performed on a Prime 9950 minicomputer of the University 'of

Iowa. Quite encouraging results were obtained even though the finest grid

that could be tested was just (30 x 19 x 14). However, it also became clear

that a computer with greater speed and larger memory was needed in order to

realize the full potential of the method. Therefore, subsequent studies in

grid refinement, domain dependence, and convergence were performed on the CRAY

XMP/24 supercomputer of the Naval Research Laboratory (NRL) and the CRAY

XMP/48 machine of the National Center for Supercomputing Applications (NCSA)

at the University of Illinois.

In order to fully utilize the vectorization capabilities of the CRAY

supercomputers, several major revisions had to be made in the original code.

These included vectorization of the tridiagonal algorithm and the subroutines

for the calculation of the finite-analytic coefficients. These code optimiza-

tions resulted in a 70-percent saving in cpu time compared to the correspond-

ing scalar calculations. The optimized code on the CRAY supercomputer runs

about 150 times faster than the original one on a Prime 9950. A typical ship

stern and wake flow calculation with a (50 x 30 x 15) grid now takes about 5-

10 minutes of cpu time to obtain fully converged solutions. It is estimated

that the same calculations would require almost 15 hours of cpu time on the

Prime 9950.

V. TEST CASES AND COMPARISONS WITH EXPERIMENTS

One of the major problems of assessing the performance of a complex

computational method which is composed of many numerical and physical models

and approximations is to find sufficiently detailed and varied test cases for

which reliable information is available from other, independent sources. For

turbulent flows, this has invariably involved recourse to experimental infor-

mation. Ideally, it is desirable to have available experimental data sets

which are (a) reliable with respect to accuracy, (b) complete enough to pro-
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vide the necessary initial and boundary conditions required to carry out a

meaningful calculation, and (c) contain sufficient additional information

which could be used to evaluate the performance of the calculation method and

its components. These requirements were brought sharply into focus at the

1980-81 Stanford Conferences on Complex Turbulent Shear Flows at which

attempts were made to identify such data sets for the evaluation of turbulence

models. In fact, it became quite evident at that time that few such data sets

existed. This was particularly the case for three-dimensional flows.

The situation with regard to the present topic of ship stern and wake

flow is not very different. In spite of the numerous experimental studies

which were mentioned in Section I.2, there is not a single data set which

satisfies all of the requirements noted above. However, this does not mean

that the available information cannot be used to provide guidance in the

development and evaluation of calculation methods. If the limitations are

recognized, the data can still be used to evaluate certain aspects of the

overall computation procedure. This also implies that it is desirable to make

comparisons with many sets of data, obtained on different hulls, by different

techniques, and in different facilities. In view of this, we have selected

five cases for which reasonably extensive data are available. In what fol-

lows, we shall briefly present the rational for selecting each of them.

The Wigley parabolic hull was selected as the first test case because it

has been used in many previous studies of wave and viscous resistance in ship

hydrodynamics and because it has a rather simple stern shape. The latter

feature is attractive in the evaluation of calculation methods with respect to

the prediction of the very near wake and the subsequent evolution of the

three-dimensional wake.

As noted earlier, the Wigley hull was one of four soapes selected for the

ITTC Cooperative Experimental Program which sought to establish a comprehen-

sive data base, and one of two on which extensive measurements were

reported. However, as noted in ITTC (1987), many of these experiments were

restricted only to force components. Among the experiments concerned with the

details of the viscous flow over the stern and in the wake, the most complete

are those of Sarda (1986) on a double model in a wind tunnel. In fact, these

experiments were carried out specifically to study the stern and wake flow,

and document the evolution of the wake from the thin boundary layer on the
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hull. The measurements included surface pressure distribution, mean velocity

field, and all components of the Reynolds-stress tensor. The comparisons

between these experiments and the present computations are greatly facilitated

by the fact that the data were collected in a Cartesian coordinate system and

are available on tape.

The second test case is the SSPA 720 Cargo Liner. The boundary layer on

a double model of this hull form was measured in a wind tunnel by Larsson

(1974). These are among the most well documented mean-flow measurements in

three-dimensional boundary layers, and were carefully examined and recompiled

in a convenient form in preparation for the SSPA-ITTC Workshop on Ship Bound-

ary Layers (Larsson, 1981). These data were supplemented by corresponding

turbulence measurements by Lofdahl (1982) and Lofdahl and Larsson (1984).

Because these experiments were conducted to study the hull boundary layer,

rather than the stern and wake flow, the measurements were made in a coordin-

ate system suitable for three-dimensional boundary layers. As discussed by

Chen and Patel (1985b), this makes it difficult to compare the data with

calculations which use generalized coordinates because the errors involved in

the interpolations are not insignificant. Nevertheless, the data of Larsson

and Lofdahl are most useful in scrutinizing some critical aspects of the

calculation method, and also in gaging the advances that have been made over

the methods which led to the results shown in Figure 1(a).

The HSVA Tanker is the third test case. Mean flow measurements in the

boundary layer on a double model of this hull were first made in a wind tunnel

by Hoffman (1976) and other measurements on the same model have been reported

since then. For example, quite detailed mean-velocity field data were

obtained by Wieghardt and Kux (1980) and Wieghardt (1982, 1983), and some

turbulence measurements were reported by Knaack (1984), and Knaack, Kux and

Wieghardt (1985). Recent communications with these authors indicate that

other experiments on this hull are still continuing.

For the comparisons made in this report, we have used the tabulated stern

and wake flow data supplied on tape by Dr. Kux. Comparison of the present

calculations with these data was greatly facilitated by the fact that the

calculated results could be readily interpolated into the Cartesian coordin-

ates in which the measurements were made. The earlier boundary-layer measure-

ments of Hoffman were used only as a guide to determine appropriate initial
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conditions. Recall that these measurements had led to the selection of this

hull as the second test case at the SSPA-ITTC Workshop. Comparison of the

present results with those presented at the Workshop (Figure lb) would again

indicate the progress that has been made in the prediction of stern and wake

flows. Futhermore, the HSVA Tanker is of fuller form than the SSPA hull and

therefore provides a more severe test of the calculation method.

The next test case is somewhat similar to the previous one insofar as it

also involves a full form hull and mean-flow measurements on a double model in

a wind tunnel. This is the SR107 Ore Carrier which has been the subject of

many collaborative experiments in Japan (see, for example, Nagamatsu, 1981;

Okajima, Toda, and Suzuki, 1985). Although these data are restricted to the

stern and wake region, and therefore there is some uncertainty concerning the

proper initial conditions, they were selected because they enable the eval-

uation of the calculation method against somewhat similar data sets obtained

in quite different facilities. Here again, the use of Cartesian coordinates

in the experiments made it convenient to carry out detailed comparisons.

The fifth and final case considered is the well known Series 60, Cb -

0.60 hull. This is the second hull for which the ITTC Cooperative Experimen-

tal Program led to the collection of extensive towing-tank data. As in the

case of the Wigley hull, however, most of these experiments were concerned

with force components and none documented the stern and wake flow in as much

detail as that on the other hulls mentioned above. Fortunately, quite exten-

sive data for this hull have recently become available from an independent

study.

Here, we shall use the data obtained in the course of a joint research

program on propeller-hull interaction between Osaka University and the

University of Iowa. These experiments included measurements with and without

an operating propeller and will be described in a forthcoming report by Toda,

et al., (1988). For the present purposes, we will consider only the measure-

ments without the propeller. These experiments on the Series 60 are particu-

larly suitable for the present study for two reasons. First, they were

designed specifically with the goal of obtaining data for the validation of

modern computational methods, and therefore the measurement coordinates and

locations were selected to facilitate direct comparisons with predictions.

Secondly, the measurements were made in a towing tank on a large model at a
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relatively low Froude number, and therefore comparisons with double-body

calculations give some information on the influence of the free surface in the

absence of a strong wave system.

Taken together, the five hull forms selected here provide a rather com-

prehensive set of test cases for the validation of the computational method.

Included are simple and complex geometries with different bow and stern

shapes, and different fullness, data obtained on double models in different

wind tunnels and those obtained with a conventional model in a towing tank,

and finally, measurements with instrumentation of varying degrees of sophisti-

cation. In the following sections, we shall point out further features of

each of the data sets which have a bearing on the evaluation of the perfor-

mance of calculation procedures, in general, and the present method, in parti-

cular. In the calculations presented below, all attempts have been made to

carefully match the conditions prevailing in the experiment but lack of some

critical information on the experiment, on the one hand, and limitations of

the calculation method, on the other, need to be borne in mind in drawing

general conclusions from the comparisons.

Before presenting the res i'ts For the individual cases, it is useful to

first describe some features that are common to all of them. Among these are

the notation used, and the procedure for the generation of initial and bound-

ary conditions.

All coordinates and geometrical parameters have been rendered dimension-

less using the ship length L as the characteristic scale, the coordinate x

being measured from the bow, rather than from midships. The velocity compon-

ents are nondimensionalized by a constant reference velocity, Uo, which is

either the velocity of the model or the velocity in the tunnel working sec-

tion. Finally, pressures and stresses are made dimensionless using the same

reference velocity, and ambient density and viscosity. All other quantities

will be defined when they are first introduced. It should also be noted that

the dimensionless coordinates (x,y,z) are used interchangeably with upper case

notations (X,Y,Z) in the figures.

The initial and boundary conditions required by the present method were

discussed in general terms in Section 111.2 (d). To obtain solutions for a

particular shape, it is necessary to prescibe the conditions at the upstream

and outer surfaces of the solution domain. Here, we have employed uniform-
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stream conditions at the outer boundary (i.e., U = 1, W 0 0, and p 0) and,

therefore, the solutions correspond to the flow around double bodies in an

unrestricted stream. In other words, wind-tunnel or towing-tank blockage

effects are not taken into account.

At the upstream section, x = 0.3, it is necessary to prescribe the dis-

tributions of (U,V,W,k,e) at all grid points, within the thin boundary layer

as well as in the inviscid flow outside. As explained earlier, it is not

necessary to prescribe the pressure because it is determined implicitly from

the equation of continuity. The specification of the five quantities, for

which there are corresponding transport equations, requires some care because

they must properly reflect the upstream history of the flow. In all cases we

prescribe a girthwise distribution of the boundary-layer thickness 6, the

friction coefficient Cf = 2 U T2, and the velocity at the edge of the boundary

layer UV. These are estimated from either previous boundary-layer and invis-

cid-flow calculations, or guessed and then adjusted to obtain agreement with

data at the first measurement station downstream from the initial section.

These quantities are used, together with the law of the wall and the law of

the wake, to generate the profiles of the longitudinal velocity U inside the

boundary layer, and the reduction from U6 to unity in the inviscid flow is

assumed to take place as r- 2 . In the first instance, V and W components are

set to zero, and k and e are obtained from correlations for a flat-plate

boundary layer. As the solution progresses, however, the values of V, W, k

and e are updated by scaling those calculated at the first downstream sec-

tion. This process is continued only for the first 20 global sweeps, and then

the initial profiles are fixed. This rather intricate procedure for the

generation of the initial conditions does not affect the principal quantity,

i.e., the axial velocity profile. However, it ensures that the subsequent

solution is carried out with initial profiles of transverse velocity compon-

ents and turbulence parameters which are compatible with the governing equa-

tions. The procedure is quite automatic and results in solutions which are

not sensitive to initial conditions.
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V.1 WIGLEY PARABOLIC HULL

(a) Available Experimental Information

The experiments of Sarda (1986) were carried out on a 10 ft (3.048 m)

long double model suspended by cables in a 5 ft (1.52 m) octagonal-section,

return-circuit, closed wind tunnel in which the freestream turbulence level

was less than 0.5 percent. The measurements were made at a Reynolds number Re

= UoL/v = 4.5 x 106. Although measurements could be made only upto a distance

of 8 ft (2.44 m, or 0.8 L) downstream of the stern, these experiments document

the wake considerably farther than the other experiments discussed

subsequently. The boundary layer on the hull was tripped by means of studs of

standard design at x = 0.05.

The available data include the pressure distribution on the hull measured

by surface pressure taps, mean-velocity components measured by a five-hole

pitot probe, and components of the mean velocity, the Reynolds-stress tensor,

and triple products of fluctuating velocity components measured by means of a

three-sensor hotwire probe. The velocity and turbulence measurements were

made at several longitudinal sections in the range 0.5 < x < 1.8, i.e., from

midships to 0.8 ship lengths downstream of the ste'n.

(b) Body Shape and Numerical Grid

The coordinates of the Wigley hull are given by

27/B = [1 - (27AL - 1)2] [1 - rZ/D)2J (79)

where (7,7,7) are Cartesian coordinates witi the origin at the bow, and the

ship length (L): beam (B): draft (D) ratio is 10:1:0.625.

The solution domain extends from a section 0.3 ship lengths from the bow

to 3.524 ship lengths downstream of the stern, and from the hull to a cylin-

drical surface located one ship length from the ship longitudinal axis. In

terms of the coordinate variables, the solution domain is defined by 0.3 < x

< 4.524, rs < r < 1.0 . This domain is covered by 50 x 30 x 15 grid points in

the axial, radial, and circumferential directions, respectively, giving a

total of 22,500 grid nodcs.
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Some views of the numerically-generated grid are shown in Figure 11. The

grid-control functions fi used to obtain this grid were given in equation

(41). The parameters appearing therein are as follows:

c= 10.6 ifA<O

0.2 ifA>0

d = 0.2

The following are some of the noteworthy features of this grid. First, the

coordinate surface n = 2, just off the hull in the radial direction, is

arranged in such a way that at all locations it lies in the range 90 < y+ <

250, y+ being the normal distance from the hull. Recall that such a con-

straint is necessary for the wall-functions approach to be applicable. Other

investigators who also employ wall functions have placed the first near-wall

grid surface much closer to the hull than the one used here. While such

solutions can be also obtained with the present method, we believe that they

cannot be trusted because whe underlying assumptions of the law of the wall

and energy equilibrium are no longer valid. In other words, grids finer than

the ones used here can be justified only if the wall-function approach is

abandoned in favor of direct solutions of the governing equations all the way

upto the wall. Secondly, we note that the grid is concentrated near the stern

and in the near-wake to resolve the large gradients which occur at the trail-

ing edge. Third, the grid spacing is increased very rapidly in the radial and

longitudinal directions. In fact, the final step size in the radial and axial

directions is of the order of 0.2 and 0.8, respectively. The use of such

larqe steps while maintaining solution accuracy is made possible by the fin-

ite-analytic discretization of the transport equations.

(c) Description of Results and Comparisons with Experiments

Here, as in all subsequent cases, we shall first examine the distribu-

tions of pressure and wall shear stress on the hull surface, and then the de-

tails of the flow field. Figure 12 shows the distribution of pressure coeffi-

cient C p (=2p) and friction velocity UT along the keel and the waterline

planes of synmetry. Girthwise distributions of Cp and the magnitude of the

friction coefficient Cf (= 21UT) at a few transverse sections are shown in

Figure 13. The data of Sarda (1986) and some unpublished results from Watmuff
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and Joubert (1985) are also shown in Figures 12 and 13. In the case of

Watmuff and Joubert the pressure datum was adjusted to match the potential
flow value at midships. The direction of the wall shear stress can be seen

from the limiting or wall streamlines plotted in Figure 14. This last figure
was obtained from the calculated wall shear stress vectors over the hull,

starting from the initial section at x = 0.3.

In Figure 12 the experimental data are restricted to the waterline

because there are no pressure taps along the sharp keel. The potential-flow
pressure distributions were obtained at the David Taylor Research Center using
the XYZ computer program. It is seen that the present calculations are in
good agreement with the data of Watmuff and Joubert, but both are considerably
higher than the measurements of Sarda near the stern, x > 0.94. The discrep-
ancy between the two sets of measurements is somewhat surprising because both
experiments were performed under similar conditions. Although the reason for
the observed differences is not entirely clear, Sarda noted that the geometry
of his model was not precisely the same as that of the mathematical form, his
model being thicker in the bow and stern regions. Potential-flow calculations

for the actual experimental shape is obviously needed to determine if the
differences in geometry are indeed responsible for the differences in the
data. Despite these uncertainties, however, we note that the present results

are in good agreement with the potential-flow solutions over much of the hull
where the boundary layer is thin. The level of disagreement between the data
of Sarda and the calculations over the midbody is also consistent with the

expected tunnel-blockage effect in the experiments. In the stern region, the
calculated pressure gradients are smaller than those in potential flow as is

to be expected from the displacement effect of the viscous flow.

The calculated friction velocities along the waterline follow the trends

shown by the data, which were obtained from Clauser plots of measured velocity
profiles, although the measurements are somewhat lower than the predictEd

values. It is seen that the friction velocity decreases along the waterline
due to the continuous thickening of the boundary layer. On the other hand,
the calculated friction velocity increases along the keel in spite of the
adverse pressure gradient that is present. This is due to a reduction in the

boundary layer thickness produced by flow divergence out of the keel plane.
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From Figure 13 it is seen that the calculated girthwise distributions of

pressure are in agreement with the two sets of measurements upto x = 0.95.

The marked disagreement between the calculations and the data of Watmuff arnd

Joubert at the next section, x = 0.962, is most likely due to interference

from the model support in the experiment. Further downstream, the calcula-

tions agree with the data of Watmuff and Joubert but, as noted already, lie

above the measurements of Sarda.

The calculations and experiments indicate that in the region 0.5 < x <

0.9 the pressure decreases in the girthwise direction from the keel towards

the waterline. This is in agreement with potential-flow theory, as would be

expected in regions where the boundary layer is thin. Although the girthwise

gradient is small, it is responsible for the secondary motion from the keel

towards the waterline. Around x = 0.8, the pressure shows an increase towards

the waterline in a region whose girthwise extent increases downstream. Even-

tually, for x > 0.9, there is an increase in pressure all the way from the

keel to the waterline. This reversal of trend from the predictions of invis-

cid theory is associated with the changes in the girthwise distribution of

boundary layer thickness over the stern.

The calculated and measured wall shear-stress coefficients shown in

Figure 13 indicate similar general trends but there exist systematic differ-

ences, particularly at the most upstream station, where the calculated values

are higher than the measurements. Although somewhat better agreement could be

secured in this respect by adjustments in the initial conditions at x = 0.3,

this was not pursued further partly because the agreement between the calcula-

tions and the data improves downstream (x > 0.92). The decrease in wall shear

stress magnitude from the keel towards the waterline is consistent with the

thinning of the boundary layer along the keel and a thickening along the

waterline brought about by the crossflow. The general direction of the cross-

flow and the changes in the direction of the wall shear stress are best seen

from the wall streamlines of Figure 14.

An overview of the flow pattern is provided by Figure 15 which shows the

velocity vectors projected onto the horizontal waterplane and the vertical

centerplane. These plots were constructed by interpolation of the numerical

results. Contours of the axial velocity (U) and velocity vectors projected

into transverse sections (V and W components) are shown in Figures 16(a) and
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(b) for some representative sections at midships, over the stern, in the near
wake, and farther downstream. Here, the transverse velocity plots also indi-
cate the grid distribution. We recall that all of these figures show informa-
tion close to the hull although the total solution domain is much larger. The
measurements of Sarda are shown in Figures 17 (a) and (b) for comparison.

Among the major features evident from Figures 15 and 16 are the follow-
ing. In the longitudinal direction, the boundary layer grows rapidly along
the waterline but remains thin along the keel. This is due to the secondary
motion which is directed from the keel towards the waterline, in the viscous
flow as well as in the outer inviscid flow. The transport of the boundary
layer fluid towards the waterline is also indicated by the convergence of the
wall streamlines in Figure 14. The direction of the transverse motion is also
consistent with that expected from considerations of the pressure gradients
associated with an inviscid flow. From potential-flow pressure distribution
on the front half of the hull we would expect the secondary flow in the bound-
ary layer upto midships and perhaps for some distance downstream to be
directed towards the keel, resulting in a thicker boundary layer at the
keel. These features were observed in the measurements of Sarda at x = 0.5
(see Figure 17) and also in his boundary-layer calculations. The present
calculations at x = 0.5 indicate that although a thicker boundary layer is
observed at the keel at this section, the secondary motion is directed towards
the keel only in a small layer close to the keel. This difference, although
small, is most likely due to the use of simple flat-plate profiles for initial
conditions (at x = 0.3) in the present calculation. While the use of a bound-
ary-layer calculation to obtain the initial conditions would reduce this
difference, additional difficulties arise in handling the sharp keel within
the framework of boundary-layer theory.

Examination of the velocity field over the stern and in the near wake
shows no dramatic changes in the flow structure. In particular, there is no
evidence of a stern vortex, althoush there is obviously longitudinal vorticity
associated with the transverse veloc-ity components. The transverse components
decay rather rapidly in the wake. The calculations predict a quite rapid
recovery of the wake to what appears to be en almost axisymmetric state by x =
1.5, a half ship length from the stern. This is at variance with the measure-
ments shown in Figure 17 which indicate a rather slow development of the wake.
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The calculated distributions of the velocity components (U,V,W), pressure

(p), and turbulent kinetic energy (k) are compared with the measurements of

Sarda (1986) in Figure 18 at several sections in the range 0.5 < x < 1.5. The

calculated results were interpolated to determine the variation of the various

quantities in the horizontal (y) direction at different depths (z = constant),

z = 0 being the waterplane. Note that the horizontal axis in these figures is

y*, the distance from the hull surface. For profiles below the keel (z <

-0.0625) and in the wake (x > 1), of course, y* = y. The data obtained with a

five-hole pitot and a triple-sensor hotwire are included to show the exper-

imental uncertainty, particularly with respect to the components V and W. In

the case of pressure, the original data which were obtained with the pitot

probe were referenced to a pressure in the wind tunnel some distance upstream

of the model. The pressure measured in the wake at x = 1.5 was nearly uniform

but higher than the reference pressure. The calculations, on the other hand,

predicted almost zero pressure relative to the pressure in the uniform

stream. In view of this, a constant (= -0.06) reference-pressure correction

has been added to the data to obtain the so-called corrected pressures shown

in Figure 18. In other words, the calculated and measured pressures have been

matched in the wake at x = 1.5. Such a constant correction obviously does not

alter the pressure gradients and therefore enables us to compare the calcu-

lated and measured gradients. On the other hand, it is not a correction for

tunnel blockage although blockage may be responsible for a part of the

observed pressure difference. A more likely possibility is an error in probe

calibration. Figure 18 contains a great deal of information regarding the

details of the flow a, on the performance of the calculation method. To aid

the understanding of the many issues involved, we shall discuss the results

starting with those at midships and progressing downstream into the wake.

The results C midships (Figure 18a) indicate that the boundary layer is

thin and the girthwise variation of its thickness is captured adequately by

the simple initial conditions prescribed at x = 0.3. There are differences in

the shapes of the axial velocity profiles at some depths, and in the shapes

and magnitudes of the transverse components particularly close to the wall.

In spite of the differences between the pitot and hotwire data, it is clear

that the generally negative values of V and W measured in the experiments are

not captured by the calculations. We have already commented on this differ-

ence. It appears that further refinements in the initial conditions could
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have been made to secure better agreement at this first measurement section.

In spite of the differences in the mean velocity field, we see that the cal-

culated pressure is in reasonable agreement with the corrected data. Thev

small departures between the two close to the wall are believed to be due to

probe interference. Finally, the profiles of turbulent kinetic energy are

also matched rather well except at the keel (z = -0.0625).

The flow over the stern is described by the results at four sections, x =

0.90, 0.95. 0.967 and 0.983. Here, the profiles of the axial velocity indi-

cate that the girthwise distribution of the thickness of the viscous region is

predicted rather well, including the near-disappearance of the boundary layer

at the keel. There is, however, a tendency for the calculated velocities to

be larger close to the wall. This is most likely associated with the use of

the wall functions. The correction for pressure gradients in the law of the

wall are presumably not sufficient to r-rnpletely describe the wall layer.

With respect to the transverse components of velocity, the calculations pre-

dict the general trends and magnitudes rather well. Unfortunately the scatter

in the data and the differences between the pitot and hotwire results preclude

more definitive conclusions. The predicted distributions of pressure are in

good agreement with the corrected data with the possible exception of a short

fetch close to the stern. The profiles of turbulent kinetic energy are also

predicted quite well except very close to the wall where the measured values

are generally larger. This feature is presumaby related to the differences in

the axial velocity profiles noted above and may again be due to the inadequacy

of the wall functions.

The results at the next three stations, namely, x = 1.002, 1.017 and

1.050, illustrate the rapid changes that take place in the neighborhood of the

centerplane (y* = y = 0) of the extreme near wake. First, we note that the

calculated results dc not extend to the centerplane because of the way in

which the plane-of-symmetry boundary conditions are enforced. However, this

is not the principal reason for the quite major differences between the calcu-

lations and measurements. Previous calculations for a flat plate (Patel and

Chen, 1987) and for bodies of revolution (Chen and Patel,1987b, 1988) indicate

similar tendencies, i.e., an overestimation of the velocity and an underesti-

mation of the turbulent kinetic energy along the wake centerline. This is

attributed to the fact that the flow in the sublayer and the blending zone of
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the upstream boundary layer has not been considered as a result of the appli-

cation of wall functions in the tubulence model. The lower measured veloci-

ties and higher measured turbulence are therefore associated with the physics

of the flow in the near-wall region. The secondary velocity components also

indicate systematic differences, presumably due to the same reason. In spite

of the discrepancy in the inner portion of the very near wake, it is encourag-

ing to note that the flow in the outer part continues to be predicted satis-

factorily in all respects.

The subsequent evolution of the wake is depicted by the results at the

next four sections, x = 1.1, 1.2, 1.3 and 1.5. It is clear that the differ-

ences which arose in the inner part of the wake at the stern persist for quite

large distances, particularly with regard to the profiles of axial velocity

and turbulent kinetic energy. The scatter in the data is such that definitive

conclusions concerning the secondary motion cannot be reached but there is

some evidence to suggest that the calculations predict a more rapid decay of

the secondary flow than is observed in the data. This was also seen from

comparisons of Figures 16 and 17. Finally, we observe that the pressure at

these distances is nearly uniform, and the comparison between the data and the

calculations for x = 1.5 show that a constant correction on the measured

pressures is justified.

(d) Summary

Insofar as the flow over the hull and the stern is concerned, it is clear

that the present calculations predict all essential features of the mean flow

with reasonable accuracy. No attempt has been made here to compare the pre-

sent results with those obtained earlier by solutions of the boundary-layer

equations (e.g. by Sarda, 1986), but it is expected that the differences may

be significant only in the stern region because there is only a weak viscous-

inviscid interaction on this rather slender hull. With regard to the turbu-

lence, we have chosen to examine only the turbulent kinetic energy, a quantity

whi;h can be measured with a greater degree of precision than the individual

Reynolds-stress components, and which directly enters the turbulence model

used in the method. The results could of course be analyzed further to exam-

ine other aspects of turbulence modelling. This has not been pursued in view

of the following.
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Perhaps the most interesting aspect of the calculations for the Wigley

hull is the very large and marked influence of using the wall functions in the

turbulence model on the prediction of the wake. The experiments indicate that

the three dimensionality and turbulence generated in the near-wall region of

the stern flow persist for quite large distances in the wake. This is presum-

ably because the pressure gradients in the stern region of this hull are too

weak to significantly affect the development of the near wake. It is clear

that further improvements in the prediction of the wake would require replace-

ment of the wall functions with a turbulence model that would enable accurate

resolution of the near-wall layers.

V.2 SSPA CARGO LINER

(a) Hull Geometry and Available Experimental Information

The experiments of Larsson (1974) were conducted on a double model of a

cargo liner in a 1.25 m x 1.80 m wind tunnel, with a freestream turbulence
level of about 0.2 percent. The model was supported from the tunnel floor by

two struts. The tests were conducted at a Reynolds number of 5 x 106, based
on model length L = 2 m. The hull offsets are shown in Figure 19. The beam

and draft of the model are 0.283 m and 0.118 m, respectively, and the block

coefficient is 0.675. Larsson made extensive potential-flow calculations,

with and without tunnel walls, to study the effect of wind-tunnel blockage on

the hull pressure distribution. These calculations have been used here to

correct the measured pressures for blockage.

As this was an investigation of the hull boundary layer, measurements of

velocity profiles were made in streamline coordinates, i.e., the two velocity

components in planes parallel to the hull surface, along and normal to the

inviscid-flow streamlines on the hull, were measured along local normals to

the hull. The inviscid streamlines calculated by Larsson, and along which his

measurements were made, are shown in Figure 19(c). The mean-velocity measure-

ments were made by hotwires and covered the range 0.20 < x < 0.95. In a later

investigation, Lofdahl (1982) (see also Lofdahl and Larsson, 1984) measured

all six components of the Reynolds-stress tensor by hotwires along the same

streamlines. However, his measurements were restricted to the region 0.75 < x

< 0.95, where the boundary layer was thick enough for probe size and interfer-

ence effects to be small.
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(b) Numerical Grid

As in the previous case, the solution domain is defined by (0.3 < x <

4.524, rs < r < 1.01, and covered by 50 x 30 x 15 grid points in the axial,

radial, and circumferential directions, respectively. From Section IV.2, we

recall that this is not the finest gird that was employed to study the grid

dependence of the present method. Some views of the numerically-generated

grid are shown in Figure 20. The grid-control functions fi used to obtain

this grid were given in equation (41). The parameters appearing therein are

as follows:

S0.10 if A < 0
0.01 if A > 0

d= 0.2

With this choice, the first grid node just off the hull lies in the range 40 <

y+ < 250.

(c) Desr.'iption of Results and Comparisons with Experiments

We have already mentioned the difficulties of interpolating data obtained

in boundary-layer coordinates to make comparisons with solutions obtained in

numerical coordinates of the type used here. We shall therefore restrict the

comparisons only to those quantities which are either unaffected by the choice

of coordinates or are insensitive to differences in the coordinates. Among

the former are the distributions of pressure and wall shear stress on the

hull. Figure 21 shows the distribution of pressure and friction velocity UT

along the keel and the waterline planes of symmetry. Girthwise distributions

of pressure and the magnitude of the friction coefficient at a few transverse

sections are shown in Figure 22. The direction of the wall shear stress can

be seen from the limiting streamlines plotted in Figure 23. The last figure

was obtained by integration of the wall shear stress vectors starting from the

initial section at x = 0.3. The data of Larsson (1974), with and without

blockage correction in the case of pressure, are also shown in Figures 21 and

22.
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Figures 21 and 22 indicate that the effect of wind tunnel blockage is

quite significant in the pressure distributions and that the calculations are

in quite good agreement with the data corrected for blockage. It is seen that

at midships the pressure is essentially uniform around the girth, buL girth-

wise gradients develop as the geometry cr,3nges. These gradients become large

near the keel as the transverse surface curvwt';,'e increases, and a region of

low pressure develops some distance from the keel. The associated girthwise

pressure gradient is such that there is a divergence of flow out of the keel

and a thinning of the boundary layer along the keel. There is also a second-

ary motion towards the lcw pressure region from above. This convergence of

flow from both sides into a region around midgirth leads, as we shall see, to

a thickening oF the viscous layer there. The relationship between the pres-

sure distribution and the wall shear stress is not immediately obvious from

Figures 21 through 23, but, as will become clear later, the low values of the

wall shear stress occur where the viscous layer becomes thick. Figure 23

shows the divergence of wall streamlines out of the keel over much of the

hull, but a rather complex pattern develops over the stern. The strong con-

vergence of streamlines in an area just above the keel at the stern is fre-

quently interpreted as evidence of a longitudinal vortex and even separ-

ation. However, as will become clear as we examine the details of the flow

for other hulls, this pattern by itself is not an indication for either a

vortex or flow separation.

The flow pattern on the waterplane and in the vertical centerplane,

constructed by interpolation of the numerical results, is shown in Figure

24. The thickening of the boundary layer over the stern in the waterplane,

and the thinning of the boundary layer along the keel are clearly seen from

these views as is the evolution of the three-dimensional wake. Contours of

the axial velocity (d) and velocity vectors projected into transverse sections

(V and W components) are shown in Figure 25 for some representative sections

in the range 0.5 < x < 1.1. The transverse velocity plots also give an indi-

cation of the grid distribution. At midships, the secondary flow is directed

away from the keel as well as from the waterplane. This leads to the thicken-

ing of the layer around midgirth which is already evident by x = 0.7. This

process continues as the secondary motion becomes stronger, particularly near

the keel where the hull geometry changes more rapidly. We now see that the

regions of low wall shear stress in Figure 22 coincide with the regions of
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thickening of the viscous layer. By x = 0.95, the thickness of the viscous

layer is almost as large as the draft of the model. At and downstream of the

stern, the secondary motion gives the impression of a longitudinal vortex, but

the strength of this motion diminishes quite rapidly.

The contours of the axial component of velocity shown in Figure 25 may be

compared with those of the magnitude of mean velocity, reconstructed by

Broberg and Larsson (1984) from the measurements of Larsson (1974) and Lofdahl

(1982), which are shown in Figure 26. We note again not only the difference

in the quantities but also the fact that the experimental contours are not

based on measurements in transverse sections. The error involved is small,

however, and there is good agreement between the calculations and measurements

with regard to the major features of the stern flow.

More detailed comparisons between experiments and calculations are

.attempted in Figure 27. The calculated results were interpolated to determine

the variation, with distance N normal to the transverse section of the hull,

of the resultant velocity parallel to the hull (Q), its component (C) normal

to the direction of the calculated streamline at the location of the measured

boundary-layer edge, and the turbulent kinetic energy (k), at each of the

points on the hull for which experimental data are available. All of these

quantities a.-e relatively insensitive to the remaining differences between the

computational and experimental locations. Also, we note that C is the so-

called crossflow velocity in the terminology of boundary-layer theory.

Figure 27a shows the profiles of Q and C. Figure 27b shows semilogarith-

mic plots of Q versus N* = U N/v, the format of the Clauser plots which were

used for the experimental determination of the wall shear stress from the

measured velocity profiles. Figure 27c shows the distributions of the turbu-

lent kinetic energy. Comparisons are presented for five transverse sections,

namely, x = 0.50, 0.75, 0.85, 0.90, and 0.95, the last four of which coincide

with those where the turbulence measurements of Lofdahl were made. For con-

venience, the girthwise locations of the measurement stations, the normals to

the transverse section at those stations, and the hull section just downstream

of the measurement section (from Figure 19) are shown in each figure. The

line numbers correspond to the potential-flow streamlines calculated by

Larsson, lines 1 and 10 being the keel and waterline, respectively. The data

are shown by symbols at all stations where measurements were made.
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Considering the midship section first, we see that the thickness of the

boundary layer and the longitudinal velocity profiles are predicted quite

well. The crossflow, which is small, is captured only qualitatively. The

Clauser plots indicate that the calculations reproduce the logarithmic layer

indicating that the placement of the near-wall nodes in the numerical grid is

satisfactory for the wall functions approach to be applicable. It is also

seen that further grid refinement can be made by pulling the near-wall nodes

closer to the wall, but as we have already shown in Section IV.2, adding

points in the grid does not by itself provide greater accuracy. More impor-

tantly, the agreement between the calculations and data in the inner region is

indicative of the accuracy with which the large gradients in the wall layer

are resolved in the numerical solutions. The agreement in the Clauser plots

is, of course, reflected in the agreement shown earlier with respect to the

wall shear stress. Finally, there is nothing remarkable about the turbulent

kinetic energy profiles at midships; they resemble those in a flat-plate

boundary layer.

The section x = 0.75 may be the most downstream section at which the flow

could still be regarded as of the boundary-layer type. Here, the velocity

magnitude and the crossflow component are predicted with reasonable accuracy

everywhere except at line 6, where it is the data which appear to be spur-

ious. The profiles of turbulent kinetic energy at this section begin to show

a trend which becomes very pronounced further downstream. We observe that the

calculated values are generally larger than the measurements and, at line 5,

which is roughly where the thickness of the viscous layer is the greatest, the

k distribution develops a plateau.

The final three sections considered in Figure 27 (x = 0.85, 0.90, 0.95)

lie in the stern-flow region where the viscous layer can no longer be regarded

as a boundary layer. From the results at these sections we make the following

observations. First, the variation of the thickness of the viscous layer,

around the girth and in the axial direction, are predicted with considerable

accuracy. Secondly, the mean velocity profiles are described quite well by

the calculations although, as evidenced by the logarithmic plots, there is a

tendency for the calculated velocities to be somewhat larger in the near wall

region. Thirdly, the general shapes of the crossflow profiles are predicted
but there exist differences in magnitude. The differences may, however, be of
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the same order as the uncertainties of interpolation. Fourthly, the predicted

turbulent kinetic energy is considerably larger than that measured. Finally,

we note a very characteristic two-layer feature developing around midgirth

(see line 5 at x = 0.85; and lines 3,5,7 at x = 0.90 and 0.95) which suggests

the existence of a thin layer of fluid close to the wall in which k diminishes

rapidly, and a much larger layer farther out where there is a plateau in k and

a gradual decrease to zero outside the viscous region. Although there is a

hint of such a two-layer structure in the calculated profiles, it is obvious

that the present turbulence model fails to capture the changes that are taking

place in the turbulence in the flow over the stern.

(d) Summary

The calculations for the SSPA liner confirm the capability of the present

numerical method to predict the essential features of the pressure and mean-

velocity fields in considerable detail. This is particularly surprising in

view of the differences between the calculated and measured turbulent kinetic-

energy distributions, and leads to the conclusion that the turbulence in the

outer part of the viscous layer is inactive and is simply being convected with

the mean flow. The success of the calculations must therefore come from the

use of the wall functions which essentially reproduce the observed logarithmic

layer close to the surface. This also suggests that further improvements are

most likely to result from refinement of the treatment of the flow in the

near-wall region. Since the experiments on this hull did not extend into the

wake, it is not possible to comment on the quality of the wake calculations.

Finally, we note that these calculations have also pointed out the impor-

tance of wind-tunnel blockage, particularly with regard to the hull pressure

distribution. The effects of blockage on the velocity distributions are too

small to be seen on the various plots. Because the present method can also

take into account wind-tunnel walls by appropriate relocation of the external

boundary of the solution domain, it would be of interest to carry out such a

calculation to study the blockage effect in greater detail.
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V.3 HSVA TANKER

(a) Hull Geometry and Available Experimental Information

The offsets of the HSVA Tanker are shown in Figure 28. The boundary

layer measurements by Hoffman (1976), and the detailed stern-flow measurements

of Wieghardt and Kux (1980) and Wieghardt (1982, 1983), were made on a double

model of this hull in a 1.2 rm square, slotted-wall wind tunnel, in which the

turbulence level was of the order of 1 percent. The slotted walls are usually

meant to reduce or eliminate blockage effects. The model was supported in the

tunnel by medns of wires and a sting at the stern. The nominal length of the

model was 2.74 m but for reference length we have used the length between

perpendicuars, L = 2.634 m. The maodel beam and draft are 0.43 m and 0.15 m,

respectively, and the block coefficiernt is 0.85.

The locations of the measurement sections in the experiments of Wieghardt

and Kux are shown in Figure 29. The data were obtained at nine axial sections

in the range -157 mm < Y < 200 mm, in the notation of Figure 29. This corre-

sponds to 0.9103 < x < 1.044 in the present notation. The measurements were

made by means of a five-hole pitot probe, and included the three components of

mean velocity (U,V,W) in Cartesian coordinates and pressure. The closely

spaced measurements enabled the determination of the mean vorticity field.

The calculations were performed for a Reynolds number of 5 x 106 which corre-
sponds to the experimental value.

(b) Numerical Grid

As in the two pre~ious cases, the chosen solution domain i, defined by

0.3 < x < 4.524, rs < r < 1.0 and was covered by 50 x 30 x 15 grid points in

the axial, radial, and circumferential airections, respectively. Some views

of the numerically-generated grid are shown in Figure 30. The grid-control

functions fl used to obtain this grid were given in equation (41). The param-

eters appearing therein are as follows:

0.20 if A < 0
0.02 if A > 0

d= 0.25
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With this choice, the first grid node just off the hull lies in the range 50 <
y+ < 250.

(c) Description of Results and Comparisons with Experiments

Figure 31 shows the distribution of pressure and friction velocity along

the keel and the waterline planes of symmetry, and the girthwise distributions

of pressure and the magnitude of the friction coefficient are shown in Figure

32 at a few transverse sections. In these figures we have included the data

from the boundary-layer experiments of Hoffman (1976) at a Reynolds number of

4.8 x 106. The section x = 0.9418 corresponds to the most downstream measure-

ment section in his experiments and to the Y = -73 mm section in the later

experiments of Wieghardt and Kux. From Figure 31 we see that the pressure

distribution is in good agreement with the data except along the keel at the

stern. The lower predicted values of friction velocity along the keel are

consistent with the differences in the pressure distributions. These dif(er-

ences are again evident from the girthwise variations at x = 0.9417 shown in

Figure 32. These suggest that the stern flow in the neighborhood of the keel

is not being described with sufficient accuracy This may be due, at least in

part, to differences between the actual hull geometry and that implied in the

calculations by the chosen numerical grid.

The direction of the wall shear stress can be seen from the limiting

streamlines plotted in Figure 33. This shows a region around midgirth at the

stern into which the wall streamlines converge. This is the area of maximum

thickness of the viscous layer. These features, like those of the results

presented in the previous two figures, are qualitatively similar to those

discussed earlier for the SSPA liner.

The rather complex stern geometry of the tanker and some general features

of the resulting flow pattern are seen fro. Figure 34. Comparison with the

corresponding figure (Figure 24) for the more slender SSPA hull shows that the

flow pattern is qualitatively similar. However, these views of the flow tend

to mask the very significant differences that exist.

Figure 35 presents comparisons between the experimental data and calcula-

tions with respect to the mean-velocity field. The contours of axial velocity

and projections of the velocity vectors in transverse sections are shown at

six sections. Particularly noteworthy here is the very fine griO u.ed for the
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measurements. Here, the measurements and calculations correspond to trans-

verse sections and therefore the comparisons do not involve the uncertainties

which were present in the case of the SSPA liner.

At the most upstream section, x = 0.6433, we see that the bouidary layer

is thin except around the turn of the bilge. Although the local crossflow is

quite weak, the thicker boundary layer is the result of flow convergence

towards the turn over some distance upstream. By the next section, x =

0.9103, the boundary layer has thickened considerably near midgirth. The

following section, x = 0.9418, corresponds to the last measurement section in

the experiments of Hoffman and the data shown in Figure lb. Comparison of the

calculations with the recent and more detailed data indicates that the general

features of the U contours and the transverse velocity components are pre-

dictea at all sections but there are differences particularly close to the

hull around z = -0.04. The gaps in the data at these depths at x = 0.9549 and

0.9692 are regions of low velocity which could not be resolved by the pitot

probe. At the three downstream sections, some of the velocity contours are

missing partly because the predicted velocities are larger and partly due to

the use of the wall functions. The wall functions could of cour:e be used to

reconstruct the contours close the hull and wake centerplane but this has not

been done here. Comparisons of specific contours, for example U = 0.5 and 0.9

at the last three sections reveal that the predictions are in remarkably good

agreement with the measurements. The solutions also capture the major fea-

tures of the secondary motion, including the magnitudes, but this is not

immediately obvious from Figure 35.

In order to make a detailed assessment of the predictions, the results of

the calculations were interpolated to obtain the distributions of the three

velocity components (U,V,W) and pressure (p) in the Cartesian coordinates

which were employed for the measurements. This makes it possible to plot the

profiles of these parameters in, say, the horizontal direction (y) at differ-

ent depths (z = constant). The results are shown in Figure 36. Although

there is a great deal of similarity in the results because of the closely

spaced stations, we have included all ten transverse sections here to facil-

itate future reference and compar-sons by others using different methods. In

general, we see that the calculations are in rather remarkable agreement with

the data in all respects except in small regions close to the hull or in the
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neighborhood of the wake centerplane just downstream of the ship. Before

discussing these features it is useful to point out that y in these profiles

is measured from the slip centerplane and therefore one gets a rough idea of

the hull shape at earh section. Also, z = 0 is the waterplane and the keel is

at z = -0.051.

Reference to Figure 29 shows that the first five sections are located in

the region where the keel is still horizontal (x = 0.9621 corresponding to

section = -19 mm), the next section is just where the stern is almost per-

pendicular (x = 0.9692 corresponds to = 0), and the remaining four sections

are located downstream of the propeller plane. It is important to keep in

mind the local gecrnetry, and particularly the changes in it, in order to

understand the results shown in Figure 36. It is convenient to discuss these

in three stages, roughly corresponding to the three regions identified above.

In the first region, upto x = 0.9621 (Figure 36a-e), we see that the U

and V components are in good agreement with the data but the vertical compon-

ent W shows a characteristic difference that persists downstream. The magni-

tude of the W component changes rather rapidly with distance from the hull

surface in the region where the surface is nearly vertical, i.e., where W is

nearly parallel to the surface. At the tvo downstream sections, we also

observe ircreasing differences in the horizontal V component. The prediction

of the pressure field is quite satisfactory, except in small layers close to

the hull which roughly coincide with the regions in which we see differences

in the W velocity component. There are two possible explanations for the

differences between the calculations and measurements. One is that the wall-

functions approach employed here rcc- not completely capture the details of

the secondary motion. The second a- ,: h more likely possiblity is that the

numerical grid does not resolve the Iocal eometry in sufficiently fine detail

to predict the secondary motions and the aE:ociated pressure field.

The plots for x = 0.9692 (Figure 36f) rev. 1 that the differences between

the calculations and measurements now extenld to the U and V components, and

the characteristic features of the W componenc noted above continue. A care-

ful examination of these differences indicates that they stem principally from

the truncation of the local geometry implied by the numerical grid employed,

and from the way in which the hull and wake boundary conditions are enforced

in the local numerical cells at this section within the framework of the
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staggered grid used in the present velocity-pressure coupling method. Hlow-

ever, previous experience with problems involving discontinuities of boundary

conditions, from no slip on the hull to zero stress on the wake centerplane,

suggests that improved results can be obtained by more refined grids and a

more direct treatment of the flow in the near-wall layer than made in the

wall-functions approach.

The results at the final four sections (x > 0.9786, Figure 36g-j) indi-

cate the development of the near wake. Here, the differences which were

generated upstream continue. Also, we see that the calculations predict a

rather rapid increase in axial velocity in the wake centerplane, a feature

which was also observed in the case of the Wigley hull (see Figure 18f-l).

This is most likely due to the use of the wall-functions which do not resolve

the flow in the near-wall layer on the hull upstream. It is interesting to

note the decay of the calculated as well as the measured secondary motion with

downstream distance. At the last section the calculated U and V components

are again in reasonably good agreement with data while the differences in W

and p persist.

As we have already noted, the measurements of Wieghardt and Kux were made

in such detail that it was possible to carry out the differentiations required

to determine the mean vorticity field. In spite of the uncertainties involved

in processing both the measured and computed data, a comparison between the

computed and measured vorticity is a particularly acid test of a computational

method because it is an examination of differences in velocity gradients

rather than just velocity components. Such a comparison is presented in

Figures 37 and 38. Figure 37 shows the contours of the longitudinal component

of voi Jcity, [aW/ay - av/az], while Figure 38 shows the contours of the
2 2 2 1/2

magnitude of the vorticity vector, (ox + Wy + Wz ) These plots show that

the calculations reproduce not only the general features of the contours but

also the magnitudes. The differences close to the hull and around the wake

centerplane are to be expected from the differences in the velocity

distributions discussed above. An additional ,nd new feature that becomes

apparent from the vorticity comparisons, however, is that the calculations

indicate a somewhat larger diffusivity compared with the measurements. This

is presumably due to an overestimation of the eddy viscosity by the

standard k-s turbulence model. We have already commented on this feature in
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W connection with the prediction of the turbulent kinetic energy in the previous

cases.

(d) Discussion

The HSVA tanker represents a more severe test of the calculation method

than the previous two hulls because of its high block coefficient and rather
abrupt changes in stern geometry. In addition to the observations that have
been made on the basis of the previous calculations, the comparisons between

the numerical results and the very extensive experimental data for the present
case suggest the need for (a) more refined treatment of the stern geometry,

(b) better resolution of the flow in the near-wall layer, and (c) some correc-

tion for the higher rates of diffusion of mean vorticity predicted by the

calculations.

V.4 SR107 ORE CARRIER

(a) Hull Geometry and Experimental Information

The offsets of this hull are shown in Figure 39. Experiments on a double
model of this form were conducted in the 1.8 m x 1.8 m wind tunnel of Osaka

University (Okajima et al., 1985 and Nishio et al., 1988). The 2 m lona model
was supported in the tunnel by means of wires along the keel. The model beam

and draft are 0.2927 m and 0.1126 m, respectively, and the block coefficient I
is 0.826. The data were obtained at five axial sections in the range 0.8 < x
< 1.0 in the present notation. The measurements were by means of a five-hole
pitot probe, and included the three components of mean velocity (U,V,W) in

Cartesian coordinates and pressure. The closely spaced measurements enabled
the determination of the mean vorticity field. The calculations were per-
formed for a Reynolds number of 2.4x10 6 which corresponds to the experimental

value.

(b) Numerical Grid

The numerical solution domain chosen for this case is the same as in the
previous cases and is defined by 0.3 < x < 4.524, rs < r < 1.0 . This was

again covered by 50 x 30 x 15 grid points in the axial, radial, and circumfer-

ential directions, respectively. Some views of the numerically-generated grid
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are shown in Figure 40. The grid-control functions fi used to obtain this

grid were given in equatiotn (41). The parameters appearing therein are as

follows:

1O.lO if A < 0
c=

0.01 if A > 0

d: 0.2

With this choice, the first grid node just off the hull lies in the range 60 <
y+ < 250.

(c) Description of Results and Comparisons with Experiments

Comparison of Figure 39 with Figure 28 shows the difference in the bow

and stern shapes of the SR107 and the HSVA hulls although both are relatively

full forms. The measurements in the two experiments were made in a very

similar manner and therefore it is convenient to present the results for the
present case in essentially the same format. Thus, Figures 41 and 42 show the

hull pressure and friction distributions, Figure 43 shows the calculated wall

streamlines, Figure 44 shows the flow pattern in the waterplane and in the

vertical centerplane, and Figures 45 through 48 give details of the velocity

and vorticity fields. In general, these results are qualitatively similar to

the corresponding results for the HSVA hull. However, the level of agreement

between the measured and computed pressure distributions shown in Figures 41

and 42 is particularly noteworthy.

An overview of the velocity -celd is given by Figure 45 which shows the
contours of the axial velocity component and projections of the velocity

vectors in five transverse sections. These may be compared with Figure 35.

The wake of the support wires at the keel is seen from the results at x = 0.8,
and this is responsible for the somewhat thicker boundary layer measured along

the keel further downstream. The reason for the abrupt thickening of the

boundary layer around the turn of the bilge shown by the data at x = 0.8 is

not clear but its effect is observed at almost a1l stations downstream. The

difference between the calculations and experim,1ents in this regard is most

likely due to the inadequacy of the simple initial conditions used in the

calculations at x = 0.3. Presumably, the bulbous bow of this model induces a
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level of three dimensionality that is: not captured by the initial condi-

tions. The initial conditions could Of course- have' been adjuste& to 6btain a

better fit to the measurements at the•f"rst -meaturement section but this has

not been attempted here.

The results of Figure 45 show yet another feature that was absent in the

previous cases. The SRI07 model included'a propeller boss and a rudder post,

which are visible in the plots for x = 0.975. These details, however, were

not considered in the present calculations and the stern sections were simply

faired as shown. It is clear from the comparisons between the calculations

and measurements, particularly at sections x = 0.95, 0.975, and 1.00, that

there is a considerable local effect of these features on the velocity

field. The differences are of course more pronounced in the transverse com-

ponents.

The aforementioned differences should be kept in mind in assessing the

detailed comparisons of the velocity components and pressure presented in

Figure 46. The format is the same as that used in the case of the HSVA tanker

(see Figure 36). It is quite remarkable that the predicted values of all

three velocity components are in good agreement with the data everywhere at

the first section, x = 0.8, except around z = -0.045, a region that corre-

sponds to the thick boundary layer mentioned earlier. The pressures measured

at this section show a rather curious behavior although the calculations and

data are in good agreement very close to the hull. In fact, the measured

trends are rather difficult to understand. The persistence of this feature at

other stations downstream would suggest a consistent error in the data.

The distributions of the velocity components at x = 0.9 are very similar

to those at x = 0.8. Some differences begin to appear at x = 0.95. These are

consistent with the effects of the propeller boss and rudder post mentioned

above. A particularly noteworthy fenture of the results at x = 0.95 and 1.00,

however, is their marked resemblanc3 with those obtained around the stern of

the HSVA tanker. Comparison of the SR107 results at x = 1.00 with those for

the HSVA tanker at x = 0.988 (Figure 36), for example, reveals very similar

distributions of all velocity components. This leads us to reiterate the

previous observations concerning the need for a better resolution of the local

geometry and flow.
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Contours of the longitudinal component of vorticity, wx= (3W/9y-3V/3z)2

are shown in Figure 47, and Figure 48 shows contours of {(0U/az)(/y21I/2, 2 21I/2 terslatO h
+ (u/ay) 2 , which is approximately (w + ) , the resultant of the

yy-and z-components of vorticity. It is clear that the calculations are in

remarkable general agreement with the experimental results. Some of the

details are not completely captured by the solutions for reasons which we have

already discussed. It is, however, interesting to note that the overall

vorticity field is not markedly affected by the presence of the propeller boss

and the rudder post. This is evidently due to the fact that while they

produce significant distortion of the velocity and pressure fields, they do

not generate large amounts of vorticity that can be seen outside their

immediate wakes.

(d) Discussion

The solutions for the SR107 hull and comparisons with the corresponding

experiments have brought forth three issues which were not evident from the
previous test cases. First, we observe that a hull with a bulbous bow may

require a more careful treatment of the initial conditions than has been

employed in the present calculations. However, the differences observed in
this respect may have been exaggerated in the present case by the rather low

Reynolds number of the experiments and perhaps an ineffective transition

device. Secondly, the local distortions of the velocity and pressure field

introduced by such practical geometrical features as a propeller boss and a

rudder post need to be taken into account in comparisons between experiments

and calculations. Ii.corporation of such geometrical features would require

further development of certain aspects of the computational method. Thirdly,

the very marked similarity of the results for Lhe SRI07 and HSVA hulls points

to the need for refinement of the treatment of the near-wall region in stern

flows.

V.5 SERIES 60, Cb = 0.60

(a) Hull Geometry and Experimental Information

The geometry of this hull is well known and is shown in Figure 49. The
model used in the experiments was fitted with a propeller boss (stern tube) as
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shown in Figure 50 but, as in the previous case, the calculations correspond

to the bare hull shown in Figure 49. Also, as noted earlier, these

experiments differ from the others in that they were conducted in a towing

tank. A, detailed description of the experiments is given by Toda et al.,

(1988). For the purposes of the present work, it suffices to note the

following. The measurelients were made on 4 m long models at a Froude number

Fn 0.16 and a Reynolds number Re 3.2 x 106. Two different models were

employed, one for the hull pressure distributions and the other for the flow-

field measurements. The calculations have been made with a flat free surface

(Fn 0) and plane-of-symmetry boundary conditions on it. The available data

include the hull pressure distribution measured by surface pressure taps, and

profiles of the velocity components (U,V,W) and pressure p measured by a five-

hole pitot probe. The latter data were obtained at numerous transverse

sections in the range 0.50 < x < 1.10. The use of Cartesian coordinates, as

in the experiments on the HSVA and the SR107 hulls, greatly facilitates

detailed comparisons between calculations and experiments.

(b) Numerical Grid

The numerical solution domain chosen for this case is the same as in the

previous cases and is defined by 0.3 < x < 4.524, rs < r < 1.0 . This was

again covered by 50 x 30 x 15 grid points in the axial, radial, and circumfer-

ential directions, respectively. Some views of the numerically-generated grid

are shown in Figure 51. The grid-control functions fi used to obtain this

grid were given in equation (41). The parameters appearing therein are as

follows:

S= 0.10 if A < 0

0.0l if A > 0

d = 0.2

With this choice, the first grid node just off the hull lies in the range 50 <

y+ < 250.
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(c) Description of Results and Comparisons with Experiments

The variation of pressure and friction velocity along the keel and the

waterline are shown in Figure 52. No, data is shown for the friction velocity
because the velocity profiles have not yet bzen analyzed through Clauser

plots. On the. other hand,- two sets of data are shown for the pressure. These

were obtained during the pitot measurements on the port and starboard sides.

The data on the waterline are those measured just below the free surface. The

close agreement of the calculations with the measured pressure distribution

along the waterline indicates that the effect of the free surface at the low

Froude number of these tests is negligible.

The girthwise distributions of pressure, measured by means of surface

pressure taps, at four typical transverse sections are shown in Figure 53.

Also shown there, for future reference, are the distributions of the friction
coefficient Cf. The major features of the hull pressure distribution are

predicted quite well except that there appears to be a nearly constant differ-

ence between the calculatiuns and data at the first three sections, and a

disagreement in a region above the keel at x = 0.975. The former could be due

to a difference between the reference pressure used in the experiments and the
true freestream pressure. The latter, on the other hand, is associated with

the presence of the propeller boss in the experiments.

Comparison of the results for the Series 60 with those obtained for the

SSPA liner indicates that the general features of the pressure and friction

distributions on these hulls are quite similar. This is also the case for the

wall streamlines shown in Figure 54, and the flow patterns in the waterplane

and the vertical centerplane shown in Figure 55.

The contours of constant axial velocity and the transverse components of

velocity are shown in Figure 56. It is clear from the plots of the data that

the measurements could not be made very close to the free surface which was
relatively flat over the stern region and coincided with the load waterline, z

= 0. Excellent agreement is observed between the calculated and measured ax-
ial velocity contours upto about x = 0.95. A close examination of the trans-

verse velocity field indicates that some differences begin to appear above and
below z = -0.032 which is where the centerline of the propeller boss is locat-

ed. This is undoubtedly an upstream influence of the boss. The results for x

- 0.975 and downstream of there clearly show the boss and its effect. It is
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seen that this influence is rather localized, as was the case for the SR107
model, and the agreement between the predictions and experiments continues to

be quite good elsewhere.

Finally, detailed distributions of the velocity components (U,V,W) and

pressure p, are shown in Figure 57 in a format that should be quite familiar

by now. In view of the discussion that has already been made of the results
for the HSVA tanker (Figure 36) and the SR107 Ore Carrier (Figure 46), we

shall point out only the two major distinguishing features of these results.

First of all, we see a high level of agreement between the calculations and
experimental data in almost all respects upto x = 0.9. There are occasional
differences which appear to be due to scatter in the data rather than to some

flow feature that is not being resolved by the calculations. Secondly, the
regions of disagreements at the downstream stations clearly define the influ-

ence of the local change in the stern geometry made by the propeller boss.

The fact that this in~luence is localized in the transverse sections is seen
from the co.ntinued agreement between the experimental data and the bare-hull

calculations.

(d) Discussion

These calculations have revealed the similarities in the stern flow of
the Series 60 and the SSPA liner. They have also indicated that in the

absence of a wave system the effect of the free surface on the viscous flow

appears to be quite weak. The detailed -imparisons in the velocity profiles

clearly delineate the effects of local hull modifications such as that of a
propeller boss. These comparisons are presented here in detail because they

will be useful in the assessment of future calculations that include such

complexities.

VI. SUMMARY AND CONCLUSIONS

A fully-elliptic numerical method for the solution of the complete

Reynold-averaged Navier Stokes equations for general three-dimensional flows
has been presented. The method uses numerically-generated nonorthogonal

coordinates while retaining the velocity components in a convenient orthogonal

system. For turbulent flows, closure of the equations is effected by the well
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known k-e turbulence model with the generally acceptid values of the constants

in the model and a two-point waNl-function approach. The various numerical

features-of the method have been described and evaluated in detail.

The numerical nmethod described here is built into a computer code
RANSTERN which consists of three programs. The first of these maps the
physical hull surface into- the rectangular plane-n I in the transformed
domain (see Figures 2 and 3). Spline functions are used for interpolation of

the numerical grid on the- hull surface. The surface grid thus obtained is

used to provide the boundary conditions for the second program which generates

the body-fitted coordinate system for the whole computational domain as
described in Section III.2.(a). the flow equations are solved in the third

program using the methods described in Section III.2.(b). For the

calculations presented in this report, the output from the second program is

used directly as input to the third. However, the third program can also

accept grids generated by other methods provided the grid-control functions

are evaluated in a compatible way.

Calculations have been performed for the flow over the stern and in the

wake of five ship hulls for which experimental data are available. Extensive

comparisons have been made with the data to understand the important features

of such flows and to gage the success with which these can be predicted by the

calculation method. The results are presented in detail so that they can be

used in the future to assess other methods and further improvements.

The following general conclusions can be drawn from this study.

(1) The present numerical method has many attractive features. Among

these are rapid and monotonic convergence to steady-state solutions starting

from very simple initial guesses, ability to perform accurate calculations

over large solution domains with a relatively modest grid, and the potential

capability to calculate unsteady flows.

(2) The method provides an excellent description of the overall features
of the flow, including the pressure and friction distributions on the hull,

and the mean velocity field in and outside the viscous layer at the stern.

Therefore, it can be used in practical applications to calculate viscous

resistance, determine the flow ahead of propellers and appendages, and study

the problem of scaling the results of model tests to full-scale Reynolds num-

bers.
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(3) Caltulatfgns for a typical hull' take a6bouit 5 to 10 minutes on a

supercomputer. It is also possible to make similar calculations on a modern
minicomputer ifi a matter of hours.

(4) The basic features of the nuuerical method are suchithat, with minor

modifications, it can be utilized for the solution of many other types of
problems. With regard to the numerical content of the niethod, improvements

can be made in several areas, the principal one being grid generation and

control..

(5) Improvements in the description of the flow in the very near wake

would require a more detailed resolution of the local surface geometry and a

better description of the flow in the near-wall layers. The second topic

involves further developments in turbulence models for near-walf flows.

'8
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Fig. 21 Pressure and friction velocity along the keel and waterline
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Fig. 22 Girthwise variation of pressure and friction coefficients
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Fig. 24 Velocity vectors in the waterplane (top) and in the vertical centerplane (bottom)
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Fig. 25 Velocity field in transverse sections ; (a) X = 0.5; (b) X = 0.6

Top: contours of axial velocity (U), Bottom: velocity vectors in transverse sections (V,W)
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Fig. 25 Velocity field in transverse sections ; (c) X = 0.7; (d) X = 0.8
Top: contours of axial velocity (U), Bottom: velocity vectors in transverse sections (V,W)

146



-. 02.

-. 02 
-

Z -. 04 z -. 04

-. 05 -. 03

-. 06 
-. 0 0

-. 07 SS FA AT X-.9 -. 07 SSPA AT X- 25

U - .6 .7 .8.9 .95 
U - .S .6.7 .1 .95.Q

-. 09 
-.-- -. 0o

0. .02 .04 .06 .06 O. .02 .04 .06 .08

V Y

0. -O . - - -.. .. ..-

-. 02 

-02'

-. 03 . "N

2-.03

Z,04

C-.o0 5\ - I.05 '' \4
S I! I!,,I

-. 06 -o, 0 .

- t 07 .07 1 ' '-07 t ; ; \ s . ^ , •-o f It
- o7 f ,SSPA Al x-A9S

S S ',AT•X-. ? , t S AT ,, ,-I

iALE 
.UO-.03

0. .02 .04 .06 .06 0. .02 .04 .08 .08

Fig. 25 Velocity field in transverse sections ; (e) X - 0.9; (f) X - 0.95

Top: contours of axial velocity (U), Bottom: velocity vectors In transverse sections (V,W)

147



., ,, -.- --- -.- -. - . . . .-I li l -i--l - -- lii -

-. 02

-. 03 -. 032

Z-.04 Z-.04

-. 0./

-. 07 SSPA AT X-1. -. 07 SSAA -.
U-.5.6.7.9.9.25 U .7.8.9 .5

-. 08 -. 09
0. .02 .04 .06 .06 0. .02 .04 .DO .08

Y Y

-1 o,.01-
2 -. 02 0

43 . 1 .0
* t.

-. o0 , tSS,, A ,-',. -. 07 ,

SCALE .\ 03 -. SA 0s

S02 0.4 .0 0- O 44.1 1 . I 0

Y Y
-. O

o 02 04 .08 . 06 0. .02 04 .08 08

Fig. 25 Velocity field in transverse sections ; (g) X = 1.0; (h) X = 1.1
Top: contours of axial velocity (U), Bottom: velocity vectors in transverse sections (V,W)

148

7.

i - - - - - -sI i , i- 
-i .1o 

ifII



x = .75 (U/U. - 0.7. 0.?. 0.9. .9.5. 1-3. 1.05) SS7A "A1I

Cu/L,, 0.7. 0.8. 0.9, 0.95, 1.0, 1.05) SSPA model

x = .85 X = .9

Cu/Uý - 0.6. 0.7, 0.8. 0.9, 0.9S. 1.0) SSPA model W(u/U -0. 6, 0.7. O .8. 0.9, 0.95. 1.0) SSPA r~ce)

x . -.95

(u/U,, 0.6, 0.7. 0.8. 0.9, 0.95) SSPA model

Fig. 26 Contours of velocity magnitude from experiments, reconstructed by Broberg and
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Fig. 41 Pressure and friction velocity along the keel and waterline
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Fig. 42 Girthwise variation of pressure and friction coefficients
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